@article{SIGMA_2008_4_a51,
author = {Tom H. Koornwinder},
title = {Zhedanov's {Algebra} $AW(3)$ and the {Double} {Affine} {Hecke} {Algebra} in the {Rank} {One} {Case.} {II.~The} {Spherical} {Subalgebra}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2008},
volume = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a51/}
}
TY - JOUR AU - Tom H. Koornwinder TI - Zhedanov's Algebra $AW(3)$ and the Double Affine Hecke Algebra in the Rank One Case. II. The Spherical Subalgebra JO - Symmetry, integrability and geometry: methods and applications PY - 2008 VL - 4 UR - http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a51/ LA - en ID - SIGMA_2008_4_a51 ER -
%0 Journal Article %A Tom H. Koornwinder %T Zhedanov's Algebra $AW(3)$ and the Double Affine Hecke Algebra in the Rank One Case. II. The Spherical Subalgebra %J Symmetry, integrability and geometry: methods and applications %D 2008 %V 4 %U http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a51/ %G en %F SIGMA_2008_4_a51
Tom H. Koornwinder. Zhedanov's Algebra $AW(3)$ and the Double Affine Hecke Algebra in the Rank One Case. II. The Spherical Subalgebra. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a51/
[19] Berest Y., Etingof P., Ginzburg V., “Cherednik algebras and differential operators on quasi-invariants”, Duke Math. J., 118 (2003), 279–337 ; math.QA/0111005 | DOI | MR | Zbl
[20] Cherednik I., “Double affine Hecke algebras, Knizhnik–Zamolodchikov equations, and Macdonald's operators”, Int. Math. Res. Not., 1992:9 (1992), 171–180 | DOI | MR | Zbl
[21] Etingof P., Ginzburg V., “Symplectic reflection algebras, Calogero–Moser space, and deformed Harish–Chandra homomorphism”, Invent. Math., 147 (2002), 243–348 ; math.AG/0011114 | DOI | MR | Zbl
[22] Gasper G., Rahman M., Basic hypergeometric series, 2nd ed., Cambridge University Press, 2004 | MR | Zbl
[23] Granovskiĭ Ya. I., Lutzenko I. M., Zhedanov A. S., “Mutual integrability, quadratic algebras, and dynamical symmetry”, Ann. Physics, 217 (1992), 1–20 | DOI | MR | Zbl
[24] Koekoek R., Swarttouw R. F., The Askey-scheme of hypergeometric orthogonal polynomials and its $q$-analogue, Report 98-17, Faculty of Technical Mathematics and Informatics, Delft University of Technology, 1998; http://aw.twi.tudelft.nl/~koekoek/askey/
[25] Koornwinder T. H., “The relationship between Zhedanov's algebra $AW(3)$ and the double affine Hecke algebra in the rank one case”, SIGMA, 3 (2007), 063, 15 pp., ages ; math.QA/0612730 | MR | Zbl
[26] Macdonald I. G., Affine Hecke algebra and orthogonal polynomials, Cambridge University Press, 2003 | MR | Zbl
[27] Noumi M., Stokman J. V., “Askey–Wilson polynomials: an affine Hecke algebraic approach”, Laredo Lectures on Orthogonal Polynomials and Special Functions, Nova Sci. Publ., Hauppauge, NY, 2004, 111–144 ; math.QA/0001033 | MR | Zbl
[28] Oblomkov A., “Double affine Hecke algebras of rank 1 and affine cubic surfaces”, Int. Math. Res. Not., 2004 (2004), 877–912 ; math.RT/0306393 | DOI | MR | Zbl
[29] Opdam E. M., “Some applications of hypergeometric shift operators”, Invent. Math., 98 (1989), 1–18 | DOI | MR | Zbl
[30] Sahi S., “Nonsymmetric Koornwinder polynomials and duality”, Ann. of Math. (2), 150 (1999), 267–282 ; q-alg/9710032 | DOI | MR | Zbl
[31] Sahi S., “Some properties of Koornwinder polynomials”, $q$-Series from a Contemporary Perspective, Contemp. Math., 254, 2000, 395–411 | MR | Zbl
[32] Sahi S., “Raising and lowering operators for Askey–Wilson polynomials”, SIGMA, 3 (2007), 002, 11 pp., ages ; math.QA/0701134 | MR | Zbl
[33] Zhedanov A. S., ““Hidden symmetry” of Askey–Wilson polynomials”, Theoret. and Math. Phys., 89 (1991), 1146–1157 | DOI | MR | Zbl