@article{SIGMA_2008_4_a50,
author = {Hajime Nagoya and Basil Grammaticos and Alfred Ramani},
title = {Quantum {Painlev\'e} {Equations:} from {Continuous} to {Discrete}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2008},
volume = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a50/}
}
TY - JOUR AU - Hajime Nagoya AU - Basil Grammaticos AU - Alfred Ramani TI - Quantum Painlevé Equations: from Continuous to Discrete JO - Symmetry, integrability and geometry: methods and applications PY - 2008 VL - 4 UR - http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a50/ LA - en ID - SIGMA_2008_4_a50 ER -
Hajime Nagoya; Basil Grammaticos; Alfred Ramani. Quantum Painlevé Equations: from Continuous to Discrete. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a50/
[1] Fokas A., Grammaticos B., Ramani A., “From continuous to discrete Painlevé equations”, J. Math. Anal. Appl., 180 (1993), 342–360 | DOI | MR | Zbl
[2] Grammaticos B., Nijhoff F. W., Papageorgiou V., Ramani A., Satsuma J., “Linearization and solutions of the discrete Painlevé III equation”, Phys. Lett. A, 185 (1994), 446–452 ; solv-int/9310003 | DOI | MR
[3] Grammaticos B., Ramani A., Papageorgiou V., “Discrete dressing transformations and Painlevé equations”, Phys. Lett. A, 235 (1997), 475–479 | DOI | MR
[4] Grammaticos B., Ramani A., Papageorgiou V., Nijhoff F., “Quantization and integrability of discrete systems”, J. Phys. A: Math. Gen., 25 (1992), 6419–6427 | DOI | MR | Zbl
[5] Grammaticos B., Ramani A., “From continuous Painlevé IV to the asymmetric discrete Painlevé I”, J. Phys. A: Math. Gen., 31 (1998), 5787–5798 | DOI | MR | Zbl
[6] Hietarinta J., “Classical versus quantum integrability”, J. Math. Phys., 25 (1984), 1833–1840 | DOI | MR
[7] Hietarinta J., Grammaticos B., “On the $\hbar^2$-correction terms in quantum integrability”, J. Phys. A: Math. Gen., 22 (1989), 1315–1322 | DOI | MR
[8] Jimbo M., Miwa T., “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II”, Phys. D, 2 (1981), 407–448 | DOI | MR
[9] Nagoya H., “Quantum Painlevé systems of type $A_l^{(1)}$”, Internat. J. Math., 15 (2004), 1007–1031 ; math.QA/0402281 | DOI | MR | Zbl
[10] Nagoya H., “Quantum Painlevé systems of type $A_{n-1}^{(1)}$ with higher degree Lax operators”, Internat. J. Math., 18 (2007), 839–868 | DOI | MR | Zbl
[11] Noumi M., Yamada Y., “Higher order Painlevé equations of type $A_l^{(1)}$”, Funkcial. Ekvac., 41 (1998), 483–503 ; math.QA/9808003 | MR | Zbl
[12] Novikov S. P., “Quantization of finite-gap potentials and a nonlinear quasiclassical approximation that arises in nonperturbative string theory”, Funct. Anal. Appl., 24 (1990), 296–306 | DOI | MR | Zbl
[13] Quispel G. R. W., Nijhoff F. W., “Integrable two-dimensional quantum mappings”, Phys. Lett. A, 161 (1992), 419–422 | DOI | MR
[14] Quispel G. R. W., Roberts J. A. G., Thompson C. J., “Integrable mappings and soliton equations. II”, Phys. D, 34 (1989), 183–192 | DOI | MR | Zbl
[15] Ramani A., Willox R., Grammaticos B., Carstea A. S., Satsuma J., “Limits and degeneracies of discrete Painlevé equations: a sequel”, Phys. A, 347 (2005), 1–16 | DOI | MR
[16] Ramani A., Tamizhmani T., Grammaticos B., Tamizhmani K. M., “The extension of integrable mappings to non-commuting variables”, J. Nonlinear Math. Phys., 10, suppl. 2 (2003), 149–165 | DOI | MR