Quantum Painlevé Equations: from Continuous to Discrete
Symmetry, integrability and geometry: methods and applications, Tome 4 (2008) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We examine quantum extensions of the continuous Painlevé equations, expressed as systems of first-order differential equations for non-commuting objects. We focus on the Painlevé equations II, IV and V. From their auto-Bäcklund transformations we derive the contiguity relations which we interpret as the quantum analogues of the discrete Painlevé equations.
Mots-clés : discrete systems; quantization; Painlevé equations.
@article{SIGMA_2008_4_a50,
     author = {Hajime Nagoya and Basil Grammaticos and Alfred Ramani},
     title = {Quantum {Painlev\'e} {Equations:} from {Continuous} to {Discrete}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2008},
     volume = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a50/}
}
TY  - JOUR
AU  - Hajime Nagoya
AU  - Basil Grammaticos
AU  - Alfred Ramani
TI  - Quantum Painlevé Equations: from Continuous to Discrete
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2008
VL  - 4
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a50/
LA  - en
ID  - SIGMA_2008_4_a50
ER  - 
%0 Journal Article
%A Hajime Nagoya
%A Basil Grammaticos
%A Alfred Ramani
%T Quantum Painlevé Equations: from Continuous to Discrete
%J Symmetry, integrability and geometry: methods and applications
%D 2008
%V 4
%U http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a50/
%G en
%F SIGMA_2008_4_a50
Hajime Nagoya; Basil Grammaticos; Alfred Ramani. Quantum Painlevé Equations: from Continuous to Discrete. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a50/

[1] Fokas A., Grammaticos B., Ramani A., “From continuous to discrete Painlevé equations”, J. Math. Anal. Appl., 180 (1993), 342–360 | DOI | MR | Zbl

[2] Grammaticos B., Nijhoff F. W., Papageorgiou V., Ramani A., Satsuma J., “Linearization and solutions of the discrete Painlevé III equation”, Phys. Lett. A, 185 (1994), 446–452 ; solv-int/9310003 | DOI | MR

[3] Grammaticos B., Ramani A., Papageorgiou V., “Discrete dressing transformations and Painlevé equations”, Phys. Lett. A, 235 (1997), 475–479 | DOI | MR

[4] Grammaticos B., Ramani A., Papageorgiou V., Nijhoff F., “Quantization and integrability of discrete systems”, J. Phys. A: Math. Gen., 25 (1992), 6419–6427 | DOI | MR | Zbl

[5] Grammaticos B., Ramani A., “From continuous Painlevé IV to the asymmetric discrete Painlevé I”, J. Phys. A: Math. Gen., 31 (1998), 5787–5798 | DOI | MR | Zbl

[6] Hietarinta J., “Classical versus quantum integrability”, J. Math. Phys., 25 (1984), 1833–1840 | DOI | MR

[7] Hietarinta J., Grammaticos B., “On the $\hbar^2$-correction terms in quantum integrability”, J. Phys. A: Math. Gen., 22 (1989), 1315–1322 | DOI | MR

[8] Jimbo M., Miwa T., “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II”, Phys. D, 2 (1981), 407–448 | DOI | MR

[9] Nagoya H., “Quantum Painlevé systems of type $A_l^{(1)}$”, Internat. J. Math., 15 (2004), 1007–1031 ; math.QA/0402281 | DOI | MR | Zbl

[10] Nagoya H., “Quantum Painlevé systems of type $A_{n-1}^{(1)}$ with higher degree Lax operators”, Internat. J. Math., 18 (2007), 839–868 | DOI | MR | Zbl

[11] Noumi M., Yamada Y., “Higher order Painlevé equations of type $A_l^{(1)}$”, Funkcial. Ekvac., 41 (1998), 483–503 ; math.QA/9808003 | MR | Zbl

[12] Novikov S. P., “Quantization of finite-gap potentials and a nonlinear quasiclassical approximation that arises in nonperturbative string theory”, Funct. Anal. Appl., 24 (1990), 296–306 | DOI | MR | Zbl

[13] Quispel G. R. W., Nijhoff F. W., “Integrable two-dimensional quantum mappings”, Phys. Lett. A, 161 (1992), 419–422 | DOI | MR

[14] Quispel G. R. W., Roberts J. A. G., Thompson C. J., “Integrable mappings and soliton equations. II”, Phys. D, 34 (1989), 183–192 | DOI | MR | Zbl

[15] Ramani A., Willox R., Grammaticos B., Carstea A. S., Satsuma J., “Limits and degeneracies of discrete Painlevé equations: a sequel”, Phys. A, 347 (2005), 1–16 | DOI | MR

[16] Ramani A., Tamizhmani T., Grammaticos B., Tamizhmani K. M., “The extension of integrable mappings to non-commuting variables”, J. Nonlinear Math. Phys., 10, suppl. 2 (2003), 149–165 | DOI | MR