Symmetry Extensions and Their Physical Reasons in the Kinetic and Hydrodynamic Plasma Models
Symmetry, integrability and geometry: methods and applications, Tome 4 (2008) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Characteristic examples of continuous symmetries in hydrodynamic plasma theory (partial differential equations) and in kinetic Vlasov–Maxwell models (integro-differential equations) are considered. Possible symmetry extensions conditional and extended symmetries are discussed. Physical reasons for these symmetry extensions are clarified.
Keywords: symmetry; plasma; hydrodynamic; kinetic.
@article{SIGMA_2008_4_a5,
     author = {Volodymyr B. Taranov},
     title = {Symmetry {Extensions} and {Their} {Physical} {Reasons} in the {Kinetic} and {Hydrodynamic} {Plasma} {Models}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2008},
     volume = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a5/}
}
TY  - JOUR
AU  - Volodymyr B. Taranov
TI  - Symmetry Extensions and Their Physical Reasons in the Kinetic and Hydrodynamic Plasma Models
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2008
VL  - 4
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a5/
LA  - en
ID  - SIGMA_2008_4_a5
ER  - 
%0 Journal Article
%A Volodymyr B. Taranov
%T Symmetry Extensions and Their Physical Reasons in the Kinetic and Hydrodynamic Plasma Models
%J Symmetry, integrability and geometry: methods and applications
%D 2008
%V 4
%U http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a5/
%G en
%F SIGMA_2008_4_a5
Volodymyr B. Taranov. Symmetry Extensions and Their Physical Reasons in the Kinetic and Hydrodynamic Plasma Models. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a5/

[1] Ibragimov N. H., Kovalev V. F., Pustovalov V. V., “Symmetries of integro-differential equations: a survey of methods illustrated by the Benney equation”, Nonlinear Dynam., 28 (2002), 135–165 ; math-ph/0109012 | DOI | MR

[2] Cicogna G., Ceccherini F., Pegoraro F., “Applications of symmetry methods to the theory of plasma physics”, SIGMA, 2 (2006), 017, 17 pp., ages ; math-ph/0602008 | MR | Zbl

[3] Taranov V. B., “On the symmetry of one-dimensional high frequency motions of a collisionless plasma”, Sov. J. Tech. Phys., 21 (1976), 720–726

[4] Gordeev A. V., Kingsep A. S., Rudakov L. I., “Electron magnetohydrodynamics”, Phys. Rep., 243 (1994), 215–465 | DOI

[5] Meleshko S. V., “Application of group analysis in gas kinetics”, Proc. Joint ISAMM/FRD Inter-Disciplinary Workshop “Symmetry Analysis and Mathematical Modelling”, 1998, 45–60

[6] Horton W., “Drift waves and transport”, Rev. Modern Phys., 71 (1999), 735–778 | DOI

[7] Taranov V. B., “Drift and ion-acoustic waves in magnetized plasmas, symmetries and invariant solutions”, Ukrainian J. Phys., 49 (2004), 870–874

[8] Taranov V. B., “Symmetry extensions in kinetic and hydrodynamic plasma models”, Proceedinds of 13th International Congress on Plasma Physics (2006, Kyiv), 2006, A041p, 4 pp., ages

[9] Cicogna G., Laino M., “On the notion of conditional symmetry of differential equations”, Rev. Math. Phys., 18 (2006), 1–18 ; math-ph/0603021 | DOI | MR