Twin “Fano-Snowflakes” over the Smallest Ring of Ternions
Symmetry, integrability and geometry: methods and applications, Tome 4 (2008) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Given a finite associative ring with unity, $R$, any free (left) cyclic submodule (FCS) generated by a unimodular $(n+1)$-tuple of elements of $R$ represents a point of the $n$-dimensional projective space over $R$. Suppose that $R$ also features FCSs generated by $(n+1)$-tuples that are not unimodular: what kind of geometry can be ascribed to such FCSs? Here, we (partially) answer this question for $n=2$ when $R$ is the (unique) non-commutative ring of order eight. The corresponding geometry is dubbed a “Fano-Snowflake” due to its diagrammatic appearance and the fact that it contains the Fano plane in its center. There exist, in fact, two such configurations – each being tied to either of the two maximal ideals of the ring – which have the Fano plane in common and can, therefore, be viewed as twins. Potential relevance of these noteworthy configurations to quantum information theory and stringy black holes is also outlined.
Keywords: geometry over rings; non-commutative ring of order eight; Fano plane.
@article{SIGMA_2008_4_a49,
     author = {Metod Saniga and Hans Havlicek and Michel Planat and Petr Pracna},
     title = {Twin {{\textquotedblleft}Fano-Snowflakes{\textquotedblright}} over the {Smallest} {Ring} of {Ternions}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2008},
     volume = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a49/}
}
TY  - JOUR
AU  - Metod Saniga
AU  - Hans Havlicek
AU  - Michel Planat
AU  - Petr Pracna
TI  - Twin “Fano-Snowflakes” over the Smallest Ring of Ternions
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2008
VL  - 4
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a49/
LA  - en
ID  - SIGMA_2008_4_a49
ER  - 
%0 Journal Article
%A Metod Saniga
%A Hans Havlicek
%A Michel Planat
%A Petr Pracna
%T Twin “Fano-Snowflakes” over the Smallest Ring of Ternions
%J Symmetry, integrability and geometry: methods and applications
%D 2008
%V 4
%U http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a49/
%G en
%F SIGMA_2008_4_a49
Metod Saniga; Hans Havlicek; Michel Planat; Petr Pracna. Twin “Fano-Snowflakes” over the Smallest Ring of Ternions. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a49/

[1] Törner G., Veldkamp F. D., “Literature on geometry over rings”, J. Geom., 42 (1991), 180–200 | DOI | MR | Zbl

[2] Planat M., Saniga M., Kibler M. R., “Quantum entanglement and projective ring geometry”, SIGMA, 2 (2006), 066, 14 pp., ages ; quant-ph/0605239 | MR | Zbl

[3] Saniga M., Planat M., Pracna P., Havlicek H., “The Veldkamp space of two-qubits”, SIGMA, 3 (2007), 075, 7 pp., ages ; arXiv:0704.0495 | MR | Zbl

[4] Havlicek H., Saniga M., “Projective ring line of a specific qudit”, J. Phys. A: Math. Theor., 40 (2007), F943–F952 ; arXiv:0708.4333 | DOI | MR | Zbl

[5] Planat M., Baboin A.-C., “Qudits of composite dimension, mutually unbiased bases and projective ring geometry”, J. Phys. A: Math. Theor., 40 (2007), F1005–F1012 ; arXiv:0709.2623 | DOI | MR | Zbl

[6] Havlicek H., Saniga M., “Projective ring line of an arbitrary single qudit”, J. Phys. A: Math. Theor., 41 (2008), 015302, 12 pp., ages ; arXiv:0710.0941 | DOI | MR | Zbl

[7] Saniga M., Planat M., Pracna P., “Projective ring line encompassing two-qubits”, Theor. and Math. Phys., 155 (2008), 905–913 ; quant-ph/0611063 | DOI | MR | Zbl

[8] Saniga M., A fine structure of finite projective ring lines, an invited talk given at the workshop on Prolegomena for Quantum Computing (November 21–22, 2007, Besançon, France)

[9] Veldkamp F. D., “Projective planes over rings of stable rang 2”, Geom. Dedicata, 11 (1981), 285–308 | DOI | MR | Zbl

[10] Veldkamp F. D., “Geometry over rings”, Handbook of Incidence Geometry, eds. F. Buekenhout, Elsevier, Amsterdam, 1995, 1033–1084 | MR

[11] Herzer A., “Chain geometries”, Handbook of Incidence Geometry, ed. F. Buekenhout, Elsevier, Amsterdam, 1995, 781–842 | MR

[12] Benz W., “Zur Umkehrung von Matrizen im Bereich der Ternionen”, Mitt. Math. Ges. Hamburg, 10 (1979), 509–512 | MR | Zbl

[13] Lex W., Poneleit V., Weinert H. J., “Über die Einzigkeit der Ternionenalgebra und linksalternative Algebren kleinen Ranges”, Acta Math. Acad. Sci. Hungar., 35 (1980), 129–138 | DOI | MR | Zbl

[14] Nöbauer C., The book of the rings – part I, pages 65 and 76, 2000

[15] Polster B., A geometrical picture book, Chapter 5, Springer, New York, 1998 | MR

[16] Brown E., “The many names of (7,3,1)”, Math. Mag., 75 (2002), 83–94 | MR | Zbl

[17] Baez J., “The octonions”, Bull. Amer. Math. Soc. (N.S.), 39 (2002), 145–205 ; math.RA/0105155 | DOI | MR | Zbl

[18] Lévay P., “Stringy black holes and the geometry of entanglement”, Phys. Rev. D, 74 (2006), 024030, 16 pp., ages ; hep-th/0603136 | DOI | MR

[19] Lévay P., “Strings, black holes, the tripartite entanglement of seven qubits and the Fano plane”, Phys. Rev. D, 75 (2007), 024024, 19 pp., ages ; hep-th/0610314 | DOI | MR

[20] Duff M. J., Ferrara S., “$E_6$ and the bipartite entanglement of three qutrits”, Phys. Rev. D, 76 (2007), 124023, 7 pp., ages ; arXiv:0704.0507 | DOI | MR

[21] Duff M. J., Ferrara S., “$E_7$ and the tripartite entanglement of seven qubits”, Phys. Rev. D, 76 (2007), 025018, 7 pp., ages ; quant-ph/0609227 | DOI | MR

[22] Conway J. H., Elkies N. D., Martin J. L., “The Mathieu group $M_{12}$ and its pseudogroup extension $M_{13}$”, Experiment. Math., 15 (2006), 223–236 ; math.GR/0508630 | MR | Zbl

[23] Conway J. H., Simons C. S., “26 implies the bimonster”, J. Algebra, 235 (2001), 805–814 | DOI | MR | Zbl

[24] Bañados M., Teitelboim C., Zanelli J., “The black hole in three dimensional space time”, Phys. Rev. Lett., 69 (1992), 1849–1851 ; hep-th/9204099 | DOI | MR

[25] Witten E., Three-dimensional gravity revisited, arXiv:0706.3359