@article{SIGMA_2008_4_a49,
author = {Metod Saniga and Hans Havlicek and Michel Planat and Petr Pracna},
title = {Twin {{\textquotedblleft}Fano-Snowflakes{\textquotedblright}} over the {Smallest} {Ring} of {Ternions}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2008},
volume = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a49/}
}
TY - JOUR AU - Metod Saniga AU - Hans Havlicek AU - Michel Planat AU - Petr Pracna TI - Twin “Fano-Snowflakes” over the Smallest Ring of Ternions JO - Symmetry, integrability and geometry: methods and applications PY - 2008 VL - 4 UR - http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a49/ LA - en ID - SIGMA_2008_4_a49 ER -
%0 Journal Article %A Metod Saniga %A Hans Havlicek %A Michel Planat %A Petr Pracna %T Twin “Fano-Snowflakes” over the Smallest Ring of Ternions %J Symmetry, integrability and geometry: methods and applications %D 2008 %V 4 %U http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a49/ %G en %F SIGMA_2008_4_a49
Metod Saniga; Hans Havlicek; Michel Planat; Petr Pracna. Twin “Fano-Snowflakes” over the Smallest Ring of Ternions. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a49/
[1] Törner G., Veldkamp F. D., “Literature on geometry over rings”, J. Geom., 42 (1991), 180–200 | DOI | MR | Zbl
[2] Planat M., Saniga M., Kibler M. R., “Quantum entanglement and projective ring geometry”, SIGMA, 2 (2006), 066, 14 pp., ages ; quant-ph/0605239 | MR | Zbl
[3] Saniga M., Planat M., Pracna P., Havlicek H., “The Veldkamp space of two-qubits”, SIGMA, 3 (2007), 075, 7 pp., ages ; arXiv:0704.0495 | MR | Zbl
[4] Havlicek H., Saniga M., “Projective ring line of a specific qudit”, J. Phys. A: Math. Theor., 40 (2007), F943–F952 ; arXiv:0708.4333 | DOI | MR | Zbl
[5] Planat M., Baboin A.-C., “Qudits of composite dimension, mutually unbiased bases and projective ring geometry”, J. Phys. A: Math. Theor., 40 (2007), F1005–F1012 ; arXiv:0709.2623 | DOI | MR | Zbl
[6] Havlicek H., Saniga M., “Projective ring line of an arbitrary single qudit”, J. Phys. A: Math. Theor., 41 (2008), 015302, 12 pp., ages ; arXiv:0710.0941 | DOI | MR | Zbl
[7] Saniga M., Planat M., Pracna P., “Projective ring line encompassing two-qubits”, Theor. and Math. Phys., 155 (2008), 905–913 ; quant-ph/0611063 | DOI | MR | Zbl
[8] Saniga M., A fine structure of finite projective ring lines, an invited talk given at the workshop on Prolegomena for Quantum Computing (November 21–22, 2007, Besançon, France)
[9] Veldkamp F. D., “Projective planes over rings of stable rang 2”, Geom. Dedicata, 11 (1981), 285–308 | DOI | MR | Zbl
[10] Veldkamp F. D., “Geometry over rings”, Handbook of Incidence Geometry, eds. F. Buekenhout, Elsevier, Amsterdam, 1995, 1033–1084 | MR
[11] Herzer A., “Chain geometries”, Handbook of Incidence Geometry, ed. F. Buekenhout, Elsevier, Amsterdam, 1995, 781–842 | MR
[12] Benz W., “Zur Umkehrung von Matrizen im Bereich der Ternionen”, Mitt. Math. Ges. Hamburg, 10 (1979), 509–512 | MR | Zbl
[13] Lex W., Poneleit V., Weinert H. J., “Über die Einzigkeit der Ternionenalgebra und linksalternative Algebren kleinen Ranges”, Acta Math. Acad. Sci. Hungar., 35 (1980), 129–138 | DOI | MR | Zbl
[14] Nöbauer C., The book of the rings – part I, pages 65 and 76, 2000
[15] Polster B., A geometrical picture book, Chapter 5, Springer, New York, 1998 | MR
[16] Brown E., “The many names of (7,3,1)”, Math. Mag., 75 (2002), 83–94 | MR | Zbl
[17] Baez J., “The octonions”, Bull. Amer. Math. Soc. (N.S.), 39 (2002), 145–205 ; math.RA/0105155 | DOI | MR | Zbl
[18] Lévay P., “Stringy black holes and the geometry of entanglement”, Phys. Rev. D, 74 (2006), 024030, 16 pp., ages ; hep-th/0603136 | DOI | MR
[19] Lévay P., “Strings, black holes, the tripartite entanglement of seven qubits and the Fano plane”, Phys. Rev. D, 75 (2007), 024024, 19 pp., ages ; hep-th/0610314 | DOI | MR
[20] Duff M. J., Ferrara S., “$E_6$ and the bipartite entanglement of three qutrits”, Phys. Rev. D, 76 (2007), 124023, 7 pp., ages ; arXiv:0704.0507 | DOI | MR
[21] Duff M. J., Ferrara S., “$E_7$ and the tripartite entanglement of seven qubits”, Phys. Rev. D, 76 (2007), 025018, 7 pp., ages ; quant-ph/0609227 | DOI | MR
[22] Conway J. H., Elkies N. D., Martin J. L., “The Mathieu group $M_{12}$ and its pseudogroup extension $M_{13}$”, Experiment. Math., 15 (2006), 223–236 ; math.GR/0508630 | MR | Zbl
[23] Conway J. H., Simons C. S., “26 implies the bimonster”, J. Algebra, 235 (2001), 805–814 | DOI | MR | Zbl
[24] Bañados M., Teitelboim C., Zanelli J., “The black hole in three dimensional space time”, Phys. Rev. Lett., 69 (1992), 1849–1851 ; hep-th/9204099 | DOI | MR
[25] Witten E., Three-dimensional gravity revisited, arXiv:0706.3359