Free Field Approach to Solutions of the Quantum Knizhnik–Zamolodchikov Equations
Symmetry, integrability and geometry: methods and applications, Tome 4 (2008) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Solutions of the qKZ equation associated with the quantum affine algebra $U_q(\widehat{sl}_2)$ and its two dimensional evaluation representation are studied. The integral formulae derived from the free field realization of intertwining operators of $q$-Wakimoto modules are shown to coincide with those of Tarasov and Varchenko.
Keywords: free field; vertex operator; qKZ equation; $q$-Wakimoto module.
@article{SIGMA_2008_4_a48,
     author = {Kazunori Kuroki and Atsushi Nakayashiki},
     title = {Free {Field} {Approach} to {Solutions} of the {Quantum} {Knizhnik{\textendash}Zamolodchikov} {Equations}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2008},
     volume = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a48/}
}
TY  - JOUR
AU  - Kazunori Kuroki
AU  - Atsushi Nakayashiki
TI  - Free Field Approach to Solutions of the Quantum Knizhnik–Zamolodchikov Equations
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2008
VL  - 4
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a48/
LA  - en
ID  - SIGMA_2008_4_a48
ER  - 
%0 Journal Article
%A Kazunori Kuroki
%A Atsushi Nakayashiki
%T Free Field Approach to Solutions of the Quantum Knizhnik–Zamolodchikov Equations
%J Symmetry, integrability and geometry: methods and applications
%D 2008
%V 4
%U http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a48/
%G en
%F SIGMA_2008_4_a48
Kazunori Kuroki; Atsushi Nakayashiki. Free Field Approach to Solutions of the Quantum Knizhnik–Zamolodchikov Equations. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a48/

[1] Abada A., Bougourzi A. H., El Gradechi M. A., “Deformation of the Wakimoto construction”, Modern Phys. Lett. A, 8 (1993), 715–724 ; hep-th/9209009 | DOI | MR

[2] Awata H., Odake S., Shiraishi J., “Free boson realization of $U_q(\widehat{sl}_N)$”, Comm. Math. Phys., 162 (1994), 61–83 ; hep-th/9305146 | DOI | MR | Zbl

[3] Awata H., Tsuchiya A., Yamada Y., “Integral formulas for the WZNW correlation functions”, Nuclear Phys. B, 365 (1991), 680–696 | DOI | MR

[4] Bougourzi A. H., Weston R. A., “Matrix elements of $U_q(su(2)_k)$ vertex operators via bosonization”, Internat. J. Modern Phys. A, 9 (1994), 4431–4447 ; hep-th/9305127 | DOI | MR | Zbl

[5] Felder G., “BRST approach to minimal models”, Nuclear Phys. B, 317 (1989), 215–236 | DOI | MR

[6] Frenkel I. B., Jing N. H., “Vertex representations of quantum affine algebras”, Proc. Nat. Acad. Sci. U.S.A., 85 (1988), 9373–9377 | DOI | MR | Zbl

[7] Frenkel I. B., Reshetikhin N. Yu., “Quantum affine algebras and holonomic difference equations”, Comm. Math. Phys., 146 (1992), 1–60 | DOI | MR | Zbl

[8] Idzumi M., Tokihiro T., Iohara K., Jimbo M., Miwa T., Nakashima T., “Quantum affine symmetry in vertex models”, Internat. J. Modern Phys. A, 8 (1993), 1479–1511 ; hep-th/9208066 | DOI | MR

[9] Jimbo M., Miwa T., Algebraic analysis of solvable lattice models, CBMS Regional Conference Series in Mathematics, 85, American Math. Soc., Providence, RI, 1995 | MR | Zbl

[10] Kato A., Quano Y.-H., Shiraishi J., “Free boson representation of $q$-vertex operators and their correlation functions”, Comm. Math. Phys., 157 (1993), 119–137 ; hep-th/9209015 | DOI | MR | Zbl

[11] Konno H., “BRST cohomology in quantum affine algebra $U_q(\widehat{sl}_2)$”, Modern Phys. Lett. A, 9 (1994), 1253–1265 ; hep-th/9310108 | DOI | MR | Zbl

[12] Konno H., “Free-field representation of the quantum affine algebra $U_q(\widehat{sl}_2)$ and form factors in the higher-spin $XXZ$ model”, Nuclear Phys. B, 432 (1994), 457–486 ; hep-th/9407122 | DOI | MR | Zbl

[13] Konno H., “An elliptic algebra $U_{q,p}(\widehat{sl}_2)$ and the fusion RSOS model”, Comm. Math. Phys., 195 (1998), 373–403 ; q-alg/9709013 | DOI | MR | Zbl

[14] Matsuo A., “Quantum algebra structure of certain Jackson integrals”, Comm. Math. Phys., 157 (1993), 479–498 | DOI | MR | Zbl

[15] Matsuo A., “A $q$-deformation of Wakimoto modules, primary fields and screening operators”, Comm. Math. Phys., 160 (1994), 33–48 ; hep-th/9212040 | DOI | MR | Zbl

[16] Shiraishi J., “Free boson representation of quantum affine algebra”, Phys. Lett. A, 171 (1992), 243–248 | DOI | MR

[17] Shiraishi J., Free boson realization of quantum affine algebras, PhD thesis, University of Tokyo, 1995

[18] Schechtman V. V., Varchenko A. N., Integral representations of $N$-point conformal correlators in the WZW model, Preprint MPI/89-51, Max-Planck-Institut fur Mathematik, 1989

[19] Schechtman V. V., Varchenko A. N., “Hypergeometric solutions of Knizhnik–Zamolodchikov equations”, Lett. Math. Phys., 20 (1990), 279–283 | DOI | MR | Zbl

[20] Tarasov V., “Hypergeometric solutions of the qKZ equation at level zero”, Czechoslovak J. Phys., 50 (2000), 193–200 | DOI | MR | Zbl

[21] Varchenko A. N., Tarasov V. O., “Jackson integral representations of solutions of the quantized Knizhnik–Zamolodchikov equation”, St. Petersburg Math. J., 6 (1995), 275–313 ; hep-th/9311040 | MR

[22] Tarasov V., Varchenko A., Geometry of $q$-hypergeometric functions, quantum affine algebras and elliptic quantum groups, Astérisque, 246, 1997, 1–135 | MR | Zbl

[23] Varchenko A., “Quantized Knizhnik–Zamolodchikov equations, quantum Yang–Baxter equation, and difference equations for $q$-hypergeometric functions”, Comm. Math. Phys., 162 (1994), 499–528 | DOI | MR | Zbl