Field-Theoretic Weyl Deformation Quantization of Enlarged Poisson Algebras
Symmetry, integrability and geometry: methods and applications, Tome 4 (2008) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

$C^*$-algebraic Weyl quantization is extended by allowing also degenerate pre-symplectic forms for the Weyl relations with infinitely many degrees of freedom, and by starting out from enlarged classical Poisson algebras. A powerful tool is found in the construction of Poisson algebras and non-commutative twisted Banach-$*$-algebras on the stage of measures on the not locally compact test function space. Already within this frame strict deformation quantization is obtained, but in terms of Banach-$*$-algebras instead of $C^*$-algebras. Fourier transformation and representation theory of the measure Banach-$*$-algebras are combined with the theory of continuous projective group representations to arrive at the genuine $C^*$-algebraic strict deformation quantization in the sense of Rieffel and Landsman. Weyl quantization is recognized to depend in the first step functorially on the (in general) infinite dimensional, pre-symplectic test function space; but in the second step one has to select a family of representations, indexed by the deformation parameter $\hbar$. The latter ambiguity is in the present investigation connected with the choice of a folium of states, a structure, which does not necessarily require a Hilbert space representation.
Keywords: Weyl quantization for infinitely many degrees of freedom; strict deformation quantization; twisted convolution products on measure spaces; Banach-$*$- and $C^*$-algebraic methods; partially universal representations.
@article{SIGMA_2008_4_a46,
     author = {Reinhard Honegger and Alfred Rieckers and Lothar Schlafer},
     title = {Field-Theoretic {Weyl} {Deformation} {Quantization} of {Enlarged} {Poisson} {Algebras}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2008},
     volume = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a46/}
}
TY  - JOUR
AU  - Reinhard Honegger
AU  - Alfred Rieckers
AU  - Lothar Schlafer
TI  - Field-Theoretic Weyl Deformation Quantization of Enlarged Poisson Algebras
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2008
VL  - 4
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a46/
LA  - en
ID  - SIGMA_2008_4_a46
ER  - 
%0 Journal Article
%A Reinhard Honegger
%A Alfred Rieckers
%A Lothar Schlafer
%T Field-Theoretic Weyl Deformation Quantization of Enlarged Poisson Algebras
%J Symmetry, integrability and geometry: methods and applications
%D 2008
%V 4
%U http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a46/
%G en
%F SIGMA_2008_4_a46
Reinhard Honegger; Alfred Rieckers; Lothar Schlafer. Field-Theoretic Weyl Deformation Quantization of Enlarged Poisson Algebras. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a46/

[1] Emch G. G., Algebraic methods in statistical mechanics and quantum field theory, John Wiley and Sons, New York, 1972 | Zbl

[2] Bratteli O., Robinson D. W., Operator algebras and quantum statistical mechanics, Vol. II, Springer, New York, 1981 | MR | Zbl

[3] Reed S., Simon B., Fourier analysis, self-adjointness, Vol. II, Academic Press, New York, 1975 | Zbl

[4] Weyl H., “Quantenmechanik und Gruppentheorie”, Z. Phys., 46 (1928), 1–46

[5] Weyl H., The theory of groups and quantum mechanics, Methuen, London, 1931; reprinted Dover Publ., New York, 1950

[6] Putnam C. R., Commutation properties of Hilbert space operators and related topics, Springer, New York – Berlin – Heidelberg, 1967 | MR | Zbl

[7] Galindo A., Pascual P., Quantum mechanics, Vols. I, II, Springer, New York – Berlin, 1989; 1991

[8] Honegger R., “On Heisenberg's uncertainty principle and the CCR”, Z. Naturforsch. A, 48 (1993), 447–451 | Zbl

[9] von Neumann J., “Die Eindeutigkeit der Schrödingerschen Operatoren”, Math. Ann., 104 (1931), 570–578 | DOI | MR | Zbl

[10] Rieffel M. A., “Quantization and $C^*$-algebras”, $C^*$-Algebras: 1943–1993, Contemp. Math., 167, ed. R. S. Doran, 1994, 67–97 | MR | Zbl

[11] Honegger R., Rieckers A., “Some continuous field quantizations, equivalent to the $C^*$-Weyl quantization”, Publ. RIMS Kyoto Univ., 41 (2005), 113–138 | DOI | MR | Zbl

[12] Garcia-Bondía J. M., Varilly C., “Algebras of distributions suitable for phase–space quantum mechanics I”, J. Math. Phys., 29 (1988), 869–879 | DOI | MR

[13] Kastler D., “The $C^*$-algebras of a free Boson field”, Comm. Math. Phys., 1 (1965), 14–48 | DOI | MR | Zbl

[14] Binz E., Honegger R., Rieckers A., “Field-theoretic Weyl quantization as a strict and continuous deformation quantization”, Ann. Henri Poincaré, 5 (2004), 327–346 | DOI | MR | Zbl

[15] Loudon R., The quantum theory of light, Clarendon Press, Oxford, 1979

[16] Cohen-Tannoudji C., Dupont-Roc J., Grynberg G., Photons atoms, introduction to QED, John Wiley Sons, New York – Toronto – Singapore, 1989

[17] Schwarz G., Hodge decompositions – a method for solving boundary value problems, Lecture Notes in Mathematics, 1607, Springer, Berlin – New York, 1995 | MR | Zbl

[18] Buchholz D., Mack G., Todorov I., “The current algebra on the circle as a germ of the local field theories”, Nuclear Phys. B, 5 (1988), 20–56 | MR

[19] Bayen F., Flato M., Fronsdal C., Lichnerovicz A., Sternheimer D., “Deformation theory and quantization”, Ann. Phys., 111 (1978), 61–151 | DOI | MR

[20] Dito J., “Star-products and nonstandard quantization for the Klein–Gordon equation”, J. Math. Phys., 33 (1992), 791–801 | DOI | MR

[21] Dito J., “An example of cancellation of infinities in the star-product quantization of fields”, Lett. Math. Phys., 27 (1993), 73–80 | DOI | MR | Zbl

[22] Dütsch M., Fredenhagen K., “Algebraic quantum field theory, perturbation theory, and the loop expansion”, Comm. Math. Phys., 219 (2001), 5–30 ; hep-th/0001129 | DOI | MR | Zbl

[23] Sternheimer D., Alcade C. A., “Analytic vectors, anomalies and star representations”, Lett. Math. Phys., 17 (1989), 117–127 | DOI | MR | Zbl

[24] Fronsdal C., “Normal ordering and quantum groups”, Lett. Math. Phys., 22 (1991), 225–228 | DOI | MR

[25] Dito J., “Star-product approach to quantum field theory: the free scalar field”, Lett. Math. Phys., 20 (1990), 125–134 | DOI | MR | Zbl

[26] Rieffel M. A., Deformation quantization for actions of $R^d$, Mem. Amer. Math. Soc., 106, no. 506, 1993 | MR

[27] Rieffel M. A., “Questions on quantization”, Operator Algebras and Operator Theory (1997, Shanghai), Contemp. Math., 228, 1998, 315–326 ; quant-ph/9712009 | MR | Zbl

[28] Landsman N. P., “Strict quantization of coadjoint orbits”, J. Math. Phys., 39 (1998), 6372–6383 ; math-ph/9807027 | DOI | MR | Zbl

[29] Landsman N. P., Mathematical topics between classical and quantum mechanics, Springer, New York, 1998 | MR

[30] Manuceau J., Sirugue M., Testard D., Verbeure A., “The smallest $C^*$-algebra for canonical commutation relations”, Comm. Math. Phys., 32 (1973), 231–243 | DOI | MR | Zbl

[31] Binz E., Honegger R., Rieckers A., “Construction and uniqueness of the $C^*$-Weyl algebra over a general pre-symplectic form”, J. Math. Phys., 45 (2004), 2885–2907 | DOI | MR | Zbl

[32] Hewitt E., Ross K. A., Abstract harmonic analysis, Vols. I, II, Springer, New York, 1963 ; 1970 | MR | Zbl

[33] Abraham R., Marsden J. E., Foundations of mechanics, 2nd ed., Benjamin/Cummings Publishing Company, London, Amsterdam, 1978 | MR | Zbl

[34] Arnold V. I., Mathematical methods of classical mechanics, Springer, New York, 1985

[35] Libermann P., Marle C.-M., Symplectic geometry and analytical mechanics, D. Reidel Publ. Co, Dordrecht, 1987 | MR | Zbl

[36] Binz E., Sniatycki J., Fischer H., Geometry of classical fields, Mathematics Studies, 154, North Holland, Amsterdam, 1988 | MR | Zbl

[37] Marsden J. E., Ratiu T., Introduction to mechanics and symmetry, Springer, New York – Berlin, 1994 | MR

[38] Schaefer H. H., Topological vector spaces, Macmillan Company, New York, 1966 | MR | Zbl

[39] Conway J. B., A course in functional analysis, Springer, New York, 1985 | MR

[40] Cohn D. L., Measure theory, Birkhäuser, Boston, 1980 | MR | Zbl

[41] Edwards C. M., Lewis J. T., “Twisted group algebras I, II”, Comm. Math. Phys., 13 (1969), 119–141 | DOI | MR | Zbl

[42] Busby R. C., Smith H. A., “Representations of twisted group algebras”, Trans. Amer. Math. Soc., 149 (1970), 503–537 | DOI | MR | Zbl

[43] Dixmier J., $C^*$-algebras, North-Holland, Amsterdam, 1977 | MR

[44] Pedersen G. K., $C^*$-algebras and their automorphism groups, Academic Press, London, 1979 | MR | Zbl

[45] Packer J. A., Raeburn I., “Twisted crossed products of $C^*$-algebras”, Math. Proc. Camb. Phil. Soc., 106 (1989), 293–311 | MR | Zbl

[46] Grundling H., “A group algebra for inductive limit groups, continuity problems of the canonical commutation relations”, Acta Appl. Math., 46 (1997), 107–145 | DOI | MR | Zbl

[47] Haag R., Kadison R. V., Kastler D., “Nets of $C^*$-algebras and classification of states”, Comm. Math. Phys., 16 (1970), 81–104 | DOI | MR | Zbl

[48] Sewell G. L., “States and dynamics of infinitely extended physical systems”, Comm. Math. Phys., 33 (1973), 43–51 | DOI | MR

[49] Kadison R. V., Ringrose J. R., Fundamentals of the theory of operator algebras, Vols. I, II, Academic Press, New York, 1983 ; 1986 | MR | Zbl

[50] Honegger R., “Global cocycle dynamics for infinite mean field quantum systems interacting with the Boson gas”, J. Math. Phys., 37 (1996), 263–282 | DOI | MR | Zbl

[51] Bratteli O., Robinson D. W., Operator algebras and quantum statistical mechanics, Vol. I, Springer, New York, 1987 | MR | Zbl

[52] Honegger R., Rieckers A., “Partially classical states of a Boson field”, Lett. Math. Phys., 64 (2003), 31–44 | DOI | MR | Zbl

[53] Robinson P. L., “Symplectic pathology”, Quart. J. Math. Oxford, 44 (1993), 101–107 | DOI | MR | Zbl

[54] Honegger R., “On the continuous extension of states on the CCR-algebra”, Lett. Math. Phys., 42 (1997), 11–25 | DOI | MR | Zbl

[55] Honegger R., “Enlarged testfunction spaces for the global free folia dynamics on the CCR-algebra”, J. Math. Phys., 39 (1998), 1153–1169 | DOI | MR | Zbl

[56] Segal I. E., “Distributions in Hilbert space and canonical systems of operators”, Trans. Amer. Math. Soc., 88 (1958), 12–41 | DOI | MR | Zbl

[57] Hörmann G., “Regular Weyl-systems and smooth structures on Heisenberg groups”, Comm. Math. Phys., 184 (1997), 51–63 | DOI | MR | Zbl

[58] Segal I. E., “Representations of the canonical commutation relations”, Cargese Lectures in Theoretical Physics, Gordon and Breach, 1967, 107–170 | MR

[59] Folland G., Harmonic analysis in phase space, Annals of Mathematics Studies, 122, Princeton University Press, Princeton, 1989 | MR | Zbl

[60] Fell J. M. G., Doran R. S., Representations of $*$-algebras, locally compact groups, and Banach $*$-algebraic bundles, Pure and Applied Mathematics, 126, Academic Press, New York – London, 1988 | MR | Zbl

[61] Takesaki M., Theory of operator algebras, Vol. I, Springer, New York, 1979 | MR