Hamiltonian Systems Inspired by the Schrödinger Equation
Symmetry, integrability and geometry: methods and applications, Tome 4 (2008) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Described is $n$-level quantum system realized in the $n$-dimensional “Hilbert” space $H$ with the scalar product $G$ taken as a dynamical variable. The most general Lagrangian for the wave function and $G$ is considered. Equations of motion and conservation laws are obtained. Special cases for the free evolution of the wave function with fixed $G$ and the pure dynamics of $G$ are calculated. The usual, first- and second-order modified Schrödinger equations are obtained.
Keywords: Schrödinger equation; Hamiltonian systems on manifolds of scalar products; $n$-level quantum systems; scalar product as a dynamical variable; essential non-perturbative nonlinearity; conservation laws; $\mathrm{GL}(n,\mathbb C)$-invariance.
@article{SIGMA_2008_4_a45,
     author = {Vasyl Kovalchuk and Jan Jerzy Slawianowski},
     title = {Hamiltonian {Systems} {Inspired} by the {Schr\"odinger} {Equation}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2008},
     volume = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a45/}
}
TY  - JOUR
AU  - Vasyl Kovalchuk
AU  - Jan Jerzy Slawianowski
TI  - Hamiltonian Systems Inspired by the Schrödinger Equation
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2008
VL  - 4
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a45/
LA  - en
ID  - SIGMA_2008_4_a45
ER  - 
%0 Journal Article
%A Vasyl Kovalchuk
%A Jan Jerzy Slawianowski
%T Hamiltonian Systems Inspired by the Schrödinger Equation
%J Symmetry, integrability and geometry: methods and applications
%D 2008
%V 4
%U http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a45/
%G en
%F SIGMA_2008_4_a45
Vasyl Kovalchuk; Jan Jerzy Slawianowski. Hamiltonian Systems Inspired by the Schrödinger Equation. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a45/

[1] Arnold V. I., Mathematical methods of classical mechanics, Springer Graduate Texts in Mathematics, 60, Springer-Verlag, New York, 1978 | MR | Zbl

[2] Doebner H.-D., Goldin G. A., “Introducing nonlinear gauge transformations in a family of nonlinear Schrödinger equations”, Phys. Rev. A, 54 (1996), 3764–3771 | DOI | MR

[3] Doebner H.-D., Goldin G. A., Nattermann P., “Gauge transformations in quantum mechanics and the unification of nonlinear Schrödinger equations”, J. Math. Phys., 40 (1999), 49–63 ; quant-ph/9709036 | DOI | MR | Zbl

[4] Dvoeglazov V. V., “The Barut second-order equation, dynamical invariants and interactions”, J. Phys. Conf. Ser., 24 (2005), 236–240 ; math-ph/0503008 | DOI

[5] Goldin G. A., “Gauge transformations for a family of nonlinear Schrödinger equations”, J. Nonlinear Math. Phys., 4 (1997), 6–11 | DOI | MR | Zbl

[6] Hehl F. W., Kerlick G. D., von der Heyde P., “General relativity with spin and torsion and its deviations from Einstein's theory”, Phys. Rev. D, 10 (1974), 1066–1069 | DOI | MR

[7] Hehl F. W., Lord E. A., Ne'eman Y., “Hadron dilatation, shear and spin as components of the intrinsic hypermomentum current and metric-affine theory of gravitation”, Phys. Lett. B, 71 (1977), 432–434 | DOI | MR

[8] Kovalchuk V., “Green function for Klein–Gordon–Dirac equation”, J. Nonlinear Math. Phys., 11, suppl. (2004), 72–77 | DOI | MR

[9] Kozlowski M., Marciak-Kozlowska J., From quarks to bulk matter, Hadronic Press, USA, 2001

[10] Kruglov S. I., “On the generalized Dirac equation for fermions with two mass states”, Ann. Fond. Louis de Broglie, 29 (2004), 1005–1016; quant-ph/0408056

[11] Marciak-Kozlowska J., Kozlowski M., Schrödinger equation for nanoscience, cond-mat/0306699

[12] Sławianowski J. J., Kovalchuk V., “Klein–Gordon–Dirac equation: physical justification and quantization attempts”, Rep. Math. Phys., 49 (2002), 249–257 | DOI | MR

[13] Sławianowski J. J., Kovalchuk V., Sławianowska A., Gołubowska B., Martens A., Rożko E. E., Zawistowski Z. J., “Affine symmetry in mechanics of collective and internal modes. Part I. Classical models”, Rep. Math. Phys., 54 (2004), 373–427 ; arXiv:0802.3027 | DOI | MR

[14] Sławianowski J. J., Kovalchuk V., Sławianowska A., Gołubowska B., Martens A., Rożko E. E., Zawistowski Z. J., “Affine symmetry in mechanics of collective and internal modes. Part II. Quantum models”, Rep. Math. Phys., 55 (2005), 1–45 ; arXiv:0802.3028 | DOI | MR

[15] Svetlichny G., Informal resource letter – nonlinear quantum mechanics on arXiv up to August 2004, quant-ph/0410036

[16] Svetlichny G., “Nonlinear quantum mechanics at the Planck scale”, Internat. J. Theoret. Phys., 44 (2005), 2051–2058 ; quant-ph/0410230 | DOI | MR | Zbl