@article{SIGMA_2008_4_a43,
author = {Eiji Onodera},
title = {Generalized {Hasimoto} {Transform} of {One-Dimensional} {Dispersive} {Flows} into {Compact} {Riemann} {Surfaces}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2008},
volume = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a43/}
}
TY - JOUR AU - Eiji Onodera TI - Generalized Hasimoto Transform of One-Dimensional Dispersive Flows into Compact Riemann Surfaces JO - Symmetry, integrability and geometry: methods and applications PY - 2008 VL - 4 UR - http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a43/ LA - en ID - SIGMA_2008_4_a43 ER -
Eiji Onodera. Generalized Hasimoto Transform of One-Dimensional Dispersive Flows into Compact Riemann Surfaces. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a43/
[1] Chang N.H., Shatah J., Uhlenbeck K., “Schrödinger maps”, Comm. Pure Appl. Math., 53 (2000), 590–602 | 3.0.CO;2-R class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[2] Constantin P., Saut J. C., “Local smoothing properties of dispersive equations”, J. Amer. Math. Soc., 1 (1989), 413–446 | DOI | MR
[3] Da Rios, “On the motion of an unbounded fluid with a vortex filament of any shape”, Rend. Circ. Mat. Palermo, 22 (1906), 117–135 (in Italian) | DOI | Zbl
[4] Fukumoto Y., “Motion of a curved vortex filament: higher-order asymptotics”, Proc. of IUTAM Symposium on Geometry and Statistics of Turbulence (1999, Hayama), Fluid Mech. Appl., 59, eds. T. Kambe, T. Nakano and T. Miyauchi, Kluwer Acad. Publ., Dordrecht, 2001, 211–216 | MR
[5] Fukumoto Y., Miyazaki T.,, “Three-dimensional distortions of a vortex filament with axial velocity”, J. Fluid Mech., 222 (1991), 369–416 | DOI | MR | Zbl
[6] Hama F. R., “Progressive deformation of a curved vortex filament by its own induction”, Phys. Fluids, 5 (1962), 1156–1162 | DOI | Zbl
[7] Hasimoto H., “A soliton on a vortex filament”, J. Fluid. Mech., 51 (1972), 477–485 | DOI | Zbl
[8] Koiso N., “The vortex filament equation and a semilinear Schrödinger equation in a Hermitian symmetric space”, Osaka J. Math., 34 (1997), 199–214 | MR | Zbl
[9] Koiso N., “Vortex filament equation and semilinear Schrödinger equation”, Nonlinear Waves (1995, Sapporo), Gakuto Intern. Ser. Math. Sci. Appl., 10, 1997, 231–236 | MR | Zbl
[10] Mizohata M., On the Cauchy problem, Academic Press, 1985 | MR | Zbl
[11] Mizuhara R., “The initial value problem for third and fourth order dispersive equations in one space dimensions”, Funkcial. Ekvac., 49 (2006), 1–38 | DOI | MR | Zbl
[12] Nishiyama T., Tani A., “Initial and initial-boundary value problems for a vortex filament with or without axial flow”, SIAM J. Math. Anal., 27 (1996), 1015–1023 | DOI | MR | Zbl
[13] Onodera E., “A third-order dispersive flow for closed curves into Kähler manifolds”, J. Geom. Anal., 18:3 (2008), 889–918 ; arXiv:0707.2660 | DOI | MR | Zbl
[14] Pang P. Y. Y., Wang H. Y., Wang Y. D., “Schrödinger flow on Hermitian locally symmetric spaces”, Comm. Anal. Geom., 10 (2002), 653–681 | MR | Zbl
[15] Sjölin P., “Regularity of solutions to the Schrödinger equation”, Duke Math. J., 55 (1987), 699–715 | DOI | MR | Zbl
[16] Sulem P.-L., Sulem C., Bardos C., “On the continuous limit for a system of classical spins”, Comm. Math. Phys., 107 (1986), 431–454 | DOI | MR | Zbl
[17] Tani A., Nishiyama T., “Solvability of equations for motion of a vortex filament with or without axial flow”, Publ. Res. Inst. Math. Sci., 33 (1997), 509–526 | DOI | MR | Zbl
[18] Tarama S., “On the wellposed Cauchy problem for some dispersive equations”, J. Math. Soc. Japan, 47 (1995), 143–158 | DOI | MR | Zbl
[19] Tarama S., “Remarks on $L^2$-wellposed Cauchy problem for some dispersive equations”, J. Math. Kyoto Univ., 37 (1997), 757–765 | MR | Zbl
[20] Vega L., “The Schroödinger equation: pointwise convergence to the initial date”, Proc. Amer. Math. Soc., 102 (1988), 874–878 | DOI | MR | Zbl