Generalized Hasimoto Transform of One-Dimensional Dispersive Flows into Compact Riemann Surfaces
Symmetry, integrability and geometry: methods and applications, Tome 4 (2008) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the structure of differential equations of one-dimensional dispersive flows into compact Riemann surfaces. These equations geometrically generalize two-sphere valued systems modeling the motion of vortex filament. We define a generalized Hasimoto transform by constructing a good moving frame, and reduce the equation with values in the induced bundle to a complex valued equation which is easy to handle. We also discuss the relationship between our reduction and the theory of inear dispersive partial differential equations.
Keywords: dispersive flow; Schrödinger map; geometric analysis; moving frame; Hasimoto transform; vortex filament.
@article{SIGMA_2008_4_a43,
     author = {Eiji Onodera},
     title = {Generalized {Hasimoto} {Transform} of {One-Dimensional} {Dispersive} {Flows} into {Compact} {Riemann} {Surfaces}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2008},
     volume = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a43/}
}
TY  - JOUR
AU  - Eiji Onodera
TI  - Generalized Hasimoto Transform of One-Dimensional Dispersive Flows into Compact Riemann Surfaces
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2008
VL  - 4
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a43/
LA  - en
ID  - SIGMA_2008_4_a43
ER  - 
%0 Journal Article
%A Eiji Onodera
%T Generalized Hasimoto Transform of One-Dimensional Dispersive Flows into Compact Riemann Surfaces
%J Symmetry, integrability and geometry: methods and applications
%D 2008
%V 4
%U http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a43/
%G en
%F SIGMA_2008_4_a43
Eiji Onodera. Generalized Hasimoto Transform of One-Dimensional Dispersive Flows into Compact Riemann Surfaces. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a43/

[1] Chang N.H., Shatah J., Uhlenbeck K., “Schrödinger maps”, Comm. Pure Appl. Math., 53 (2000), 590–602 | 3.0.CO;2-R class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[2] Constantin P., Saut J. C., “Local smoothing properties of dispersive equations”, J. Amer. Math. Soc., 1 (1989), 413–446 | DOI | MR

[3] Da Rios, “On the motion of an unbounded fluid with a vortex filament of any shape”, Rend. Circ. Mat. Palermo, 22 (1906), 117–135 (in Italian) | DOI | Zbl

[4] Fukumoto Y., “Motion of a curved vortex filament: higher-order asymptotics”, Proc. of IUTAM Symposium on Geometry and Statistics of Turbulence (1999, Hayama), Fluid Mech. Appl., 59, eds. T. Kambe, T. Nakano and T. Miyauchi, Kluwer Acad. Publ., Dordrecht, 2001, 211–216 | MR

[5] Fukumoto Y., Miyazaki T.,, “Three-dimensional distortions of a vortex filament with axial velocity”, J. Fluid Mech., 222 (1991), 369–416 | DOI | MR | Zbl

[6] Hama F. R., “Progressive deformation of a curved vortex filament by its own induction”, Phys. Fluids, 5 (1962), 1156–1162 | DOI | Zbl

[7] Hasimoto H., “A soliton on a vortex filament”, J. Fluid. Mech., 51 (1972), 477–485 | DOI | Zbl

[8] Koiso N., “The vortex filament equation and a semilinear Schrödinger equation in a Hermitian symmetric space”, Osaka J. Math., 34 (1997), 199–214 | MR | Zbl

[9] Koiso N., “Vortex filament equation and semilinear Schrödinger equation”, Nonlinear Waves (1995, Sapporo), Gakuto Intern. Ser. Math. Sci. Appl., 10, 1997, 231–236 | MR | Zbl

[10] Mizohata M., On the Cauchy problem, Academic Press, 1985 | MR | Zbl

[11] Mizuhara R., “The initial value problem for third and fourth order dispersive equations in one space dimensions”, Funkcial. Ekvac., 49 (2006), 1–38 | DOI | MR | Zbl

[12] Nishiyama T., Tani A., “Initial and initial-boundary value problems for a vortex filament with or without axial flow”, SIAM J. Math. Anal., 27 (1996), 1015–1023 | DOI | MR | Zbl

[13] Onodera E., “A third-order dispersive flow for closed curves into Kähler manifolds”, J. Geom. Anal., 18:3 (2008), 889–918 ; arXiv:0707.2660 | DOI | MR | Zbl

[14] Pang P. Y. Y., Wang H. Y., Wang Y. D., “Schrödinger flow on Hermitian locally symmetric spaces”, Comm. Anal. Geom., 10 (2002), 653–681 | MR | Zbl

[15] Sjölin P., “Regularity of solutions to the Schrödinger equation”, Duke Math. J., 55 (1987), 699–715 | DOI | MR | Zbl

[16] Sulem P.-L., Sulem C., Bardos C., “On the continuous limit for a system of classical spins”, Comm. Math. Phys., 107 (1986), 431–454 | DOI | MR | Zbl

[17] Tani A., Nishiyama T., “Solvability of equations for motion of a vortex filament with or without axial flow”, Publ. Res. Inst. Math. Sci., 33 (1997), 509–526 | DOI | MR | Zbl

[18] Tarama S., “On the wellposed Cauchy problem for some dispersive equations”, J. Math. Soc. Japan, 47 (1995), 143–158 | DOI | MR | Zbl

[19] Tarama S., “Remarks on $L^2$-wellposed Cauchy problem for some dispersive equations”, J. Math. Kyoto Univ., 37 (1997), 757–765 | MR | Zbl

[20] Vega L., “The Schroödinger equation: pointwise convergence to the initial date”, Proc. Amer. Math. Soc., 102 (1988), 874–878 | DOI | MR | Zbl