Riccati and Ermakov Equations in Time-Dependent and Time-Independent Quantum Systems
Symmetry, integrability and geometry: methods and applications, Tome 4 (2008) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The time-evolution of the maximum and the width of exact analytic wave packet (WP) solutions of the time-dependent Schrödinger equation (SE) represents the particle and wave aspects, respectively, of the quantum system. The dynamics of the maximum, located at the mean value of position, is governed by the Newtonian equation of the corresponding classical problem. The width, which is directly proportional to the position uncertainty, obeys a complex nonlinear Riccati equation which can be transformed into a real nonlinear Ermakov equation. The coupled pair of these equations yields a dynamical invariant which plays a key role in our investigation. It can be expressed in terms of a complex variable that linearizes the Riccati equation. This variable also provides the time-dependent parameters that characterize the Green's function, or Feynman kernel, of the corresponding problem. From there, also the relation between the classical and quantum dynamics of the systems can be obtained. Furthermore, the close connection between the Ermakov invariant and the Wigner function will be shown. Factorization of the dynamical invariant allows for comparison with creation/annihilation operators and supersymmetry where the partner potentials fulfil (real) Riccati equations. This provides the link to a nonlinear formulation of time-independent quantum mechanics in terms of an Ermakov equation for the amplitude of the stationary state wave functions combined with a conservation law. Comparison with SUSY and the time-dependent problems concludes our analysis.
Keywords: Riccati equation; Ermakov invariant; wave packet dynamics; nonlinear quantum mechanics.
@article{SIGMA_2008_4_a42,
     author = {Dieter Schuch},
     title = {Riccati and {Ermakov} {Equations} in {Time-Dependent} and {Time-Independent} {Quantum} {Systems}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2008},
     volume = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a42/}
}
TY  - JOUR
AU  - Dieter Schuch
TI  - Riccati and Ermakov Equations in Time-Dependent and Time-Independent Quantum Systems
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2008
VL  - 4
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a42/
LA  - en
ID  - SIGMA_2008_4_a42
ER  - 
%0 Journal Article
%A Dieter Schuch
%T Riccati and Ermakov Equations in Time-Dependent and Time-Independent Quantum Systems
%J Symmetry, integrability and geometry: methods and applications
%D 2008
%V 4
%U http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a42/
%G en
%F SIGMA_2008_4_a42
Dieter Schuch. Riccati and Ermakov Equations in Time-Dependent and Time-Independent Quantum Systems. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a42/

[1] Schrödinger E., “Quantisierung als Eigenwertproblem”, Ann. Phys., 79 (1926), 361–376 | DOI

[2] Reinisch G., “Nonlinear quantum mechanics”, Phys. A, 206 (1994), 229–252 ; Reinisch G., “Classical position probability distribution in stationary and separable quantum systems”, Phys. Rev. A, 56 (1997), 3409–3416 | DOI | MR | DOI

[3] Ermakov V. P., “Second-order differential equations, Conditions of complete integrability”, Univ. Izv. Kiev, 20:9 (1880), 1–25

[4] Milne W. E., “The numerical determination of characteristic numbers”, Phys. Rev., 35 (1930), 863–867 ; Pinney E., “The nonlinear differential equation $y''+p(x)y+cy^{-3}=0$”, Proc. Amer. Math. Soc., 1 (1950), 681 ; Lewis H. R., “Classical and quantum systems with time-dependent harmonic-oscillator-type Hamiltonians”, Phys. Rev. Lett., 18 (1967), 510–512 | DOI | DOI | MR | Zbl | DOI

[5] Lutzky M., “Noether's theorem and the time-dependent harmonic oscillator”, Phys. Lett. A, 68 (1979), 3–4 | DOI | MR

[6] Malkin I. A., Man'ko V. I., Trifonov D. A., “Linear adiabatic invariants and coherent states”, J. Math. Phys., 14 (1973), 576–582 ; Markov M. A. (ed.), Invariants and evolution of nonstationary quantum systems, Proceedings of the Lebedev Physical Institute, 183, Nova Science, New York, 1989 | DOI

[7] Feynman R. P., Hibbs A. R., Quantum mechanics and path integrals, McGraw-Hill, New York, 1965 | Zbl

[8] Schleich W. P., Quantum optics in phase space, Chapter 17, Wiley-VCh, Berlin, 2001 | Zbl

[9] Schuch D., Moshinsky M., “Connection between quantum-mechanical and classical time evolution via a dynamical invariant”, Phys. Rev. A, 73 (2006), 062111, 10 pp., ages ; Schuch D., “Connection between quantum-mechanical and classical time evolution of certain dissipative systems via a dynamical invariant”, J. Math. Phys., 48 (2007), 122701, 19 pp., ages | DOI | DOI | MR | Zbl

[10] Wigner E. P., “On the quantum correction for thermodynamical equilibrium”, Phys. Rev., 40 (1932), 749–759 ; Hillery M., O'Connell R. F., Scully M. O., Wigner E. P., “Distribution functions in physics: fundamentals”, Phys. Rep., 106 (1984), 121–167 | DOI | DOI | MR

[11] Schuch D., “On the relation between the Wigner function and an exact dynamical invariant”, Phys. Lett. A, 338 (2005), 225–231 | DOI | MR | Zbl

[12] Lewis H. R., Riesenfeld W. B., “An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field”, J. Math. Phys., 10 (1969), 1458–1473 ; Hartley J. G., Ray J. R., “Ermakov systems and quantum-mechanical superposition law”, Phys. Rev. A, 24 (1981), 2873–2876 | DOI | MR | DOI | MR

[13] Cooper F., Khare A., Sukhatme U., Supersymmetry in Quantum Mechanics, World Scientific, Singapore, 2001 ; Kalka H., Soff G., Supersymmetrie, Teubner, Stuttgart, 1997 | MR | Zbl

[14] Madelung E., “Quantentheorie in hydrodynamischer Form”, Z. Phys., 40 (1926), 322–326 | Zbl

[15] Lee R. A., “Quantum ray equations”, J. Phys. A: Math. Gen., 15 (1982), 2761–2774 | DOI | MR

[16] Kaushal R. S., “Quantum analogue of Ermakov systems and the phase of the quantum wave function”, Intern. J. Theoret. Phys., 40 (2001), 835–847 | DOI | MR | Zbl

[17] Korsch H. J., Laurent H., “Milne's differential equation and numerical solutions of the Schrödinger equation. I. Bound-state energies for single- and double minimum potentials”, J. Phys. B: At. Mol. Phys., 14 (1981), 4213–4230 ; Korsch H. J., Laurent H. and Mohlenkamp, “Milne's differential equation and numerical solutions of the Schrödinger equation. II. Complex energy resonance states”, J. Phys. B: At. Mol. Phys., 15 (1982), 1–15 | DOI | MR | DOI | MR

[18] Schuch D., “Relations between wave and particle aspects for motion in a magnetic field”, New Challenges in Computational Quantum Chemistry, eds. R. Broer, P. J. C. Aerts and P. S. Bagus, University of Groningen, 1994, 255–269; Maamache M. Bounames A., Ferkous N., “Comment on “Wave function of a time-dependent harmonic oscillator in a static magnetic field””, Phys. Rev. A, 73 (2006), 016101, 3 pp., ages | DOI

[19] Ray J. R., “Time-dependent invariants with applications in physics”, Lett. Nuovo Cim., 27 (1980), 424–428 ; Sarlet W., “Class of Hamiltonians with one degree-of-freedom allowing applications of Kruskal's asymptotic theory in closed form. II”, Ann. Phys. (N.Y.), 92 (1975), 248–261 | DOI | MR | DOI | MR | Zbl

[20] Lewis H. R., Leach P. G. L., “Exact invariants for a class of time-dependent nonlinear Hamiltonian systems”, J. Math. Phys., 23 (1982), 165–175 | DOI | MR | Zbl

[21] Sebawa Abdalla M., Leach P. G. L., “Linear and quadratic invariants for the transformed Tavis–Cummings model”, J. Phys. A: Math. Gen., 36 (2003), 12205–12221 ; Sebawa Abdalla M., Leach P. G. L., “Wigner functions for time-dependent coupled linear oscillators via linear and quadratic invariant processes”, J. Phys. A: Math. Gen., 38 (2005), 881–893 | DOI | MR | DOI | MR

[22] Kaushal R. S., Classical and quantum mechanics of noncentral potentials. A survey of 2D systems, Springer, Heidelberg, 1998 | MR