@article{SIGMA_2008_4_a42,
author = {Dieter Schuch},
title = {Riccati and {Ermakov} {Equations} in {Time-Dependent} and {Time-Independent} {Quantum} {Systems}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2008},
volume = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a42/}
}
Dieter Schuch. Riccati and Ermakov Equations in Time-Dependent and Time-Independent Quantum Systems. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a42/
[1] Schrödinger E., “Quantisierung als Eigenwertproblem”, Ann. Phys., 79 (1926), 361–376 | DOI
[2] Reinisch G., “Nonlinear quantum mechanics”, Phys. A, 206 (1994), 229–252 ; Reinisch G., “Classical position probability distribution in stationary and separable quantum systems”, Phys. Rev. A, 56 (1997), 3409–3416 | DOI | MR | DOI
[3] Ermakov V. P., “Second-order differential equations, Conditions of complete integrability”, Univ. Izv. Kiev, 20:9 (1880), 1–25
[4] Milne W. E., “The numerical determination of characteristic numbers”, Phys. Rev., 35 (1930), 863–867 ; Pinney E., “The nonlinear differential equation $y''+p(x)y+cy^{-3}=0$”, Proc. Amer. Math. Soc., 1 (1950), 681 ; Lewis H. R., “Classical and quantum systems with time-dependent harmonic-oscillator-type Hamiltonians”, Phys. Rev. Lett., 18 (1967), 510–512 | DOI | DOI | MR | Zbl | DOI
[5] Lutzky M., “Noether's theorem and the time-dependent harmonic oscillator”, Phys. Lett. A, 68 (1979), 3–4 | DOI | MR
[6] Malkin I. A., Man'ko V. I., Trifonov D. A., “Linear adiabatic invariants and coherent states”, J. Math. Phys., 14 (1973), 576–582 ; Markov M. A. (ed.), Invariants and evolution of nonstationary quantum systems, Proceedings of the Lebedev Physical Institute, 183, Nova Science, New York, 1989 | DOI
[7] Feynman R. P., Hibbs A. R., Quantum mechanics and path integrals, McGraw-Hill, New York, 1965 | Zbl
[8] Schleich W. P., Quantum optics in phase space, Chapter 17, Wiley-VCh, Berlin, 2001 | Zbl
[9] Schuch D., Moshinsky M., “Connection between quantum-mechanical and classical time evolution via a dynamical invariant”, Phys. Rev. A, 73 (2006), 062111, 10 pp., ages ; Schuch D., “Connection between quantum-mechanical and classical time evolution of certain dissipative systems via a dynamical invariant”, J. Math. Phys., 48 (2007), 122701, 19 pp., ages | DOI | DOI | MR | Zbl
[10] Wigner E. P., “On the quantum correction for thermodynamical equilibrium”, Phys. Rev., 40 (1932), 749–759 ; Hillery M., O'Connell R. F., Scully M. O., Wigner E. P., “Distribution functions in physics: fundamentals”, Phys. Rep., 106 (1984), 121–167 | DOI | DOI | MR
[11] Schuch D., “On the relation between the Wigner function and an exact dynamical invariant”, Phys. Lett. A, 338 (2005), 225–231 | DOI | MR | Zbl
[12] Lewis H. R., Riesenfeld W. B., “An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field”, J. Math. Phys., 10 (1969), 1458–1473 ; Hartley J. G., Ray J. R., “Ermakov systems and quantum-mechanical superposition law”, Phys. Rev. A, 24 (1981), 2873–2876 | DOI | MR | DOI | MR
[13] Cooper F., Khare A., Sukhatme U., Supersymmetry in Quantum Mechanics, World Scientific, Singapore, 2001 ; Kalka H., Soff G., Supersymmetrie, Teubner, Stuttgart, 1997 | MR | Zbl
[14] Madelung E., “Quantentheorie in hydrodynamischer Form”, Z. Phys., 40 (1926), 322–326 | Zbl
[15] Lee R. A., “Quantum ray equations”, J. Phys. A: Math. Gen., 15 (1982), 2761–2774 | DOI | MR
[16] Kaushal R. S., “Quantum analogue of Ermakov systems and the phase of the quantum wave function”, Intern. J. Theoret. Phys., 40 (2001), 835–847 | DOI | MR | Zbl
[17] Korsch H. J., Laurent H., “Milne's differential equation and numerical solutions of the Schrödinger equation. I. Bound-state energies for single- and double minimum potentials”, J. Phys. B: At. Mol. Phys., 14 (1981), 4213–4230 ; Korsch H. J., Laurent H. and Mohlenkamp, “Milne's differential equation and numerical solutions of the Schrödinger equation. II. Complex energy resonance states”, J. Phys. B: At. Mol. Phys., 15 (1982), 1–15 | DOI | MR | DOI | MR
[18] Schuch D., “Relations between wave and particle aspects for motion in a magnetic field”, New Challenges in Computational Quantum Chemistry, eds. R. Broer, P. J. C. Aerts and P. S. Bagus, University of Groningen, 1994, 255–269; Maamache M. Bounames A., Ferkous N., “Comment on “Wave function of a time-dependent harmonic oscillator in a static magnetic field””, Phys. Rev. A, 73 (2006), 016101, 3 pp., ages | DOI
[19] Ray J. R., “Time-dependent invariants with applications in physics”, Lett. Nuovo Cim., 27 (1980), 424–428 ; Sarlet W., “Class of Hamiltonians with one degree-of-freedom allowing applications of Kruskal's asymptotic theory in closed form. II”, Ann. Phys. (N.Y.), 92 (1975), 248–261 | DOI | MR | DOI | MR | Zbl
[20] Lewis H. R., Leach P. G. L., “Exact invariants for a class of time-dependent nonlinear Hamiltonian systems”, J. Math. Phys., 23 (1982), 165–175 | DOI | MR | Zbl
[21] Sebawa Abdalla M., Leach P. G. L., “Linear and quadratic invariants for the transformed Tavis–Cummings model”, J. Phys. A: Math. Gen., 36 (2003), 12205–12221 ; Sebawa Abdalla M., Leach P. G. L., “Wigner functions for time-dependent coupled linear oscillators via linear and quadratic invariant processes”, J. Phys. A: Math. Gen., 38 (2005), 881–893 | DOI | MR | DOI | MR
[22] Kaushal R. S., Classical and quantum mechanics of noncentral potentials. A survey of 2D systems, Springer, Heidelberg, 1998 | MR