Local Quasitriangular Hopf Algebras
Symmetry, integrability and geometry: methods and applications, Tome 4 (2008) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We find a new class of Hopf algebras, local quasitriangular Hopf algebras, which generalize quasitriangular Hopf algebras. Using these Hopf algebras, we obtain solutions of the Yang–Baxter equation in a systematic way. The category of modules with finite cycles over a local quasitriangular Hopf algebra is a braided tensor category.
Keywords: Hopf algebra; braided category.
@article{SIGMA_2008_4_a41,
     author = {Shouchuan Zhang and Mark D. Gould and Yao-Zhong Zhang},
     title = {Local {Quasitriangular} {Hopf} {Algebras}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2008},
     volume = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a41/}
}
TY  - JOUR
AU  - Shouchuan Zhang
AU  - Mark D. Gould
AU  - Yao-Zhong Zhang
TI  - Local Quasitriangular Hopf Algebras
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2008
VL  - 4
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a41/
LA  - en
ID  - SIGMA_2008_4_a41
ER  - 
%0 Journal Article
%A Shouchuan Zhang
%A Mark D. Gould
%A Yao-Zhong Zhang
%T Local Quasitriangular Hopf Algebras
%J Symmetry, integrability and geometry: methods and applications
%D 2008
%V 4
%U http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a41/
%G en
%F SIGMA_2008_4_a41
Shouchuan Zhang; Mark D. Gould; Yao-Zhong Zhang. Local Quasitriangular Hopf Algebras. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a41/

[1] Auslander M., Reiten I., Smalø S. O., Representation theory of Artin algebras, Cambridge University Press, 1995 | MR | Zbl

[2] Belavin A. A., Drinfel'd V. G., “solutions of the classical Yang–Baxter equations for simple Lie algebras”, Functional Anal. Appl., 16:3 (1982), 159–180 | DOI | MR

[3] Chin W., Montgomery S., “Basic coalgebras”, Modular Interfaces (1995, Riverside, CA), AMS/IP Stud. Adv. Math., 4, Amer. Math. Soc., Providence, RI, 1997, 41–47 | MR | Zbl

[4] Cibils C., Rosso M., “Hopf quivers”, J. Algebra, 254 (2002), 241–251 ; math.QA/0009106 | DOI | MR | Zbl

[5] Cibils C., Rosso M., “Algebres des chemins quantiques”, Adv. Math., 125 (1997), 171–199 | DOI | MR | Zbl

[6] Drinfel'd V. G., “Quantum groups”, Proceedings International Congress of Mathematicians (August 3–11, 1986, Berkeley, CA), Amer. Math. Soc., Providence, RI, 1987, 798–820 | MR

[7] Dascalescu S., Nastasescu C., Raianu S., Hopf algebras: an introduction, Marcel Dekker Inc., 2001 | MR | Zbl

[8] Doi Y., Takeuchi M., “Multiplication alteration by two-cocycles – the quantum version”, Comm. Algebra, 22 (1994), 5715–5732 | DOI | MR | Zbl

[9] Jantzen J. C., Lectures on quantum groups, Graduate Studies in Mathematics, 6, Amer. Math. Soc., Providence, RI, 1996 | MR | Zbl

[10] Majid S., “Algebras and Hopf algebras in braided categories”, Advances in Hopf Algebras (1992, Chicago, IL), Lecture Notes in Pure and Appl. Math., 158, Marcel Dekker, New York, 1994, 55–105 | MR | Zbl

[11] Montgomery S., Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, 82, Amer. Math. Soc., Providence, RI, 1993 | MR | Zbl

[12] Nichols W., “Bialgebras of type one”, Comm. Algebra, 6 (1978), 1521–1552 | DOI | MR | Zbl

[13] Lusztig G., Introduction to quantum groups, Progress in Mathematics, 110, Birkhäuser, Boston, MA, 1993 | MR | Zbl

[14] Kassel C., Quantum groups, Graduate Texts in Mathematics, 155, Springer-Verlag, New York, 1995 | MR | Zbl

[15] Sweedler M. E., Hopf algebras, Benjamin, New York, 1969 | MR | Zbl

[16] Yang C. N., Ge M. L. (ed.), Braid group, knot theory and statistical mechanics, World Scientific, Singapore, 1989 | MR

[17] Zhang S., Chen H.-X., “The double bicrossproducts in braided tensor categories”, Comm. Algebra, 29 (2001), 31–66 | DOI | MR | Zbl