@article{SIGMA_2008_4_a40,
author = {Victor D. Gershun},
title = {Integrable {String} {Models} in {Terms} of {Chiral} {Invariants} of $\mathrm{SU}(n)$, $\mathrm{SO}(n)$,},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2008},
volume = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a40/}
}
TY - JOUR
AU - Victor D. Gershun
TI - Integrable String Models in Terms of Chiral Invariants of $\mathrm{SU}(n)$, $\mathrm{SO}(n)$,
JO - Symmetry, integrability and geometry: methods and applications
PY - 2008
VL - 4
UR - http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a40/
LA - en
ID - SIGMA_2008_4_a40
ER -
Victor D. Gershun. Integrable String Models in Terms of Chiral Invariants of $\mathrm{SU}(n)$, $\mathrm{SO}(n)$,. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a40/
[1] Magri F., “A simple model of the integrable Hamiltonian equation”, J. Math. Phys., 19 (1978), 1156–1162 | DOI | MR | Zbl
[2] Okubo S., Das A., “The integrability condition for dynamical systems”, Phys. Lett. B, 209 (1988), 311–314 | DOI | MR
[3] Dubrovin B. A., Novikov S. P., “Hamiltonian formalism of one-dimensional systems of hydrodynamic type and the Bogolyubov–Whitham averaging method”, Dokl. Akad. Nauk SSSR, 270 (1983), 781–785 (in Russian) | MR | Zbl
[4] Dubrovin B. A., Novikov S. P., “Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory”, Russian Math. Surveys, 44:6 (1989), 35–124 | DOI | MR | Zbl
[5] Ferapontov E. V., “Differential geometry of nonlocal Hamiltonian of hydrodynamic type”, Funct. Anal. Appl., 25 (1991), 195–204 | DOI | MR | Zbl
[6] Mokhov O. I., Ferapontov E. V., “Nonlocal Hamiltonian operators of hydrodynamic type that are connected with metrics of constant curvature”, Russian Math. Surveys, 45:3 (1990), 218–219 | DOI | MR | Zbl
[7] Mokhov O. I., “Symplectic and Poisson structures on loop spaces of smooth manifolds, and integrable systems”, Russian Math. Surveys, 53:3 (1998), 515–622 | DOI | MR | Zbl
[8] Tsarev S. P., “Poisson brackets and one-dimensional Hamiltonian systems of hydrodynamic type”, Dokl. Akad. Nauk SSSR, 282 (1985), 534–537 | MR | Zbl
[9] Maltsev A. Ya., “On the compatible weakly nonlocal Poisson brackets of hydrodynamic type”, Int. J. Math. Math. Sci., 32 (2002), 587–614 ; nlin.SI/0111015 | DOI | MR | Zbl
[10] Ferapontov E. V., “Nonlocal Hamiltonian operators of hydrodynamic type: differential geometry and applications”, Amer. Math. Soc. Transl. (2), 170 (1995), 33–58 | MR | Zbl
[11] Mokhov O. I., “The Liouville canonical form of compatible nonlocal Poisson brackets of hydrodynamic type, and integrable hierarchies”, Funct. Anal. Appl., 37:2 (2003), 103–113 ; math.DG/0201223 | DOI | MR | Zbl
[12] Mokhov O. I., “Compatible Dubrovin–Novikov Hamiltonian operators, Lie derivative and integrable systems of hydrodynamic type”, Theoret. and Math. Phys., 133 (2002), 1557–1564 ; math.DG/0201281 | DOI | MR
[13] Pavlov M. V., “Multi-Hamiltonian structures of the Whitham equations”, Russian Acad. Sci. Dokl. Math., 50:2 (1995), 220–223 | MR
[14] Pavlov M. V., “Integrability of Egorov systems of hydrodynamic type”, Theoret. and Math. Phys., 150:2 (2007), 225–243 ; nlin.SI/0606017 | DOI | MR | Zbl
[15] Maltsev A. Ya., Novikov S. P., “On the local systems Hamiltonian in the weakly non-local Poisson brackets”, Phys. D, 156 (2001), 53–80 ; nlin.SI/0006030 | DOI | MR | Zbl
[16] Goldschmidt Y. Y., Witten E., “Conservation laws in some two-dimensional models”, Phys. Lett. B, 91 (1980), 392–396 | DOI | MR
[17] Aref'eva I. Ya., Kulish P. P., Nissimov E. R., Pacheva S. J., Infinite set of conservation laws of the quantum chiral field in 2D spacetime, preprint LOMI E-I-1978, unpublished
[18] Gershun V. D., “Integrable string models of hydrodynamic type”, J. Kharkov University, Phys. Ser. Nucl., Part., Fields, 657:1(26) (2005), 109–113
[19] Gershun V. D., “Integrable string models and sigma-models of hydrodynamic type in terms of invariant chiral currents”, Part 1, Problems of Atomic Science and Technology, 3(1) (2007), 16–21
[20] Dijkgraaf R., Witten E., “Mean field theory, topological field theory, and multi-matrix models”, Nuclear Phys. B, 342 (1990), 486–522 | DOI | MR
[21] Dijkgraaf R., Verlinde H., Verlinde E., “Topological strings in $d1$”, Nuclear Phys. B, 352 (1991), 59–86 | DOI | MR
[22] Dubrovin B. A., “Geometry of 2D topological field theories”, Integrable systems and quantum groups, Lecture Notes in Math., 1620, 1996, 120–348 ; hep-th/9407018 | MR | Zbl
[23] Dubrovin B., Zhang Y., “Bi-Hamiltonian hierarchies in 2D topological field theory at one-loop approximation”, Comm. Math. Phys., 198 (1998), 311–361 ; hep-th/9712232 | DOI | MR | Zbl
[24] Evans J. M., Hassan M., MacKay N. J., Mountain A. J., “Local conserved charges in principal chiral models”, Nuclear Phys. B, 561 (1999), 385–412 ; hep-th/9902008 | DOI | MR | Zbl
[25] de Azcarraga J. A., Macfarlane A. J., Mountain A. J., Perez Bueno J. C., “Invariant tensors for simple groups”, Nuclear Phys. B, 510 (1998), 657–687 ; physics/9706006 | DOI | MR | Zbl
[26] Pohlmeyer K., “A group-theoretical approach to the quantization of the free relativistic closed string”, Phys. Lett. B, 119 (1982), 100–104 | DOI | MR
[27] Meusburger C., Rehren K.-H., “Algebraic quantization of the closed bosonic string”, Comm. Math. Phys., 237 (2003), 69–85 ; math-ph/0202041 | MR | Zbl
[28] Thiemann T., “The LQS string-loop quantum gravity quantization of string theory. I. Flat target space”, Classical Quantum Gravity, 23 (2006), 1923–1970 ; math-ph/0401172 | DOI | MR | Zbl
[29] Klein A., “Invariant operators of the unitary unimodular group in $n$ dimensions”, J. Math. Phys., 4 (1963), 1283–1284 | DOI | MR | Zbl
[30] Sudbery A., Some aspects of chiral $[\delta]u(3)\times[\delta]u(3)$ symmetry in hadron dynamics, PhD Thesis, Cambridge University, 1970; Sudbery A., “Computer-friendly $d$-tensor identities for $SU(n)$”, J. Phys. A: Math. Gen., 23 (1990), L705–L710 | DOI | MR