Quantum Dynamics on the Worldvolume from Classical $\mathrm{su}(n)$ Cohomology
Symmetry, integrability and geometry: methods and applications, Tome 4 (2008) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A key symmetry of classical $p$-branes is invariance under worldvolume diffeomorphisms. Under the assumption that the worldvolume, at fixed values of the time, is a compact, quantisable Kähler manifold, we prove that the Lie algebra of volume-preserving diffeomorphisms of the worldvolume can be approximated by $\mathrm{su}(n)$, for $n\to\infty$. We also prove, under the same assumptions regarding the worldvolume at fixed time, that classical Nambu brackets on the worldvolume are quantised by the multibrackets corresponding to cocycles in the cohomology of the Lie algebra $\mathrm{su}(n)$.
Keywords: branes; Nambu brackets; Lie-algebra cohomology.
@article{SIGMA_2008_4_a39,
     author = {Jos\'e M. Isidro and Pedro Fern\'andez de C\'ordoba},
     title = {Quantum {Dynamics} on the {Worldvolume} from {Classical} $\mathrm{su}(n)$ {Cohomology}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2008},
     volume = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a39/}
}
TY  - JOUR
AU  - José M. Isidro
AU  - Pedro Fernández de Córdoba
TI  - Quantum Dynamics on the Worldvolume from Classical $\mathrm{su}(n)$ Cohomology
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2008
VL  - 4
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a39/
LA  - en
ID  - SIGMA_2008_4_a39
ER  - 
%0 Journal Article
%A José M. Isidro
%A Pedro Fernández de Córdoba
%T Quantum Dynamics on the Worldvolume from Classical $\mathrm{su}(n)$ Cohomology
%J Symmetry, integrability and geometry: methods and applications
%D 2008
%V 4
%U http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a39/
%G en
%F SIGMA_2008_4_a39
José M. Isidro; Pedro Fernández de Córdoba. Quantum Dynamics on the Worldvolume from Classical $\mathrm{su}(n)$ Cohomology. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a39/

[1] Wigner E., “On the quantum correction for thermodynamic equilibrium”, Phys. Rev., 40 (1932), 749–759 | DOI

[2] Groenewold H., “On the principles of elementary quantum mechanics”, Physica, 12 (1946), 405–460 | DOI | MR | Zbl

[3] Moyal J., “Quantum mechanics as a statistical theory”, Proc. Camb. Phil. Soc., 45 (1949), 99–124 | DOI | MR | Zbl

[4] Bayen F., Flato M., Fronsdal C., Lichnerowicz A., Sternheimer D., “Deformation theory and quantization. I. Deformations of symplectic structures”, Ann. Physics, 111 (1978), 61–110 | DOI | MR | Zbl

[5] Kontsevich M., “Deformation quantization of Poisson manifolds”, Lett. Math. Phys., 66 (2003), 157–216 ; q-alg/9709040 | DOI | MR | Zbl

[6] Cattaneo A., Keller B., Torossian C., Bruguières A., Déformation, quantification, théorie de Lie, Panoramas et Synthèses, 20, Société Mathématique de France, Paris, 2005 | MR | Zbl

[7] Dito G., Sternheimer D., Deformation quantization: genesis, developments and metamorphoses, math.QA/0201168 | MR

[8] Nambu Y., “Generalized Hamiltonian dynamics”, Phys. Rev. D, 7 (1973), 2405–2412 | DOI | MR | Zbl

[9] Curtright T., Zachos C., “Classical and quantum Nambu mechanics”, Phys. Rev. D, 68 (2003), 085001, 29 pp., ages ; hep-th/0212267 | DOI

[10] Knapp A., Lie groups, Lie algebras and cohomology, Princeton University Press, Princeton, 1988 | MR | Zbl

[11] Goldberg S., Curvature and homology, Dover, New York, 1982 | MR

[12] Hoppe J., Quantum theory of a massless relativistic surface and a two dimensional bound state problem, Ph.D. Thesis, MIT, 1982; ; de Wit B., Hoppe J., Nicolai H., “On the quantum mechanics of supermembranes”, Nuclear Phys. B, 305 (1988), 545–581 ; de Witt B., “Supermembranes and supermatrix models”, Quantum Aspects of Gauge Theories, Supersymmetry and Unification, eds. A. Ceresole, C. Kounnas, D. Lüst and S. Theisen, Springer, Berlin, 1999, 45–69 http://www.aei.mpg.de/~hoppe | DOI | MR | MR

[13] Hoppe J., “On M-algebras, the quantisation of Nambu mechanics, and volume preserving diffeomorphisms”, Helv. Phys. Acta, 70 (1997), 302–317 ; ; Hoppe J., Membranes and matrix models, hep-th/9602020hep-th/0206192 | MR | Zbl

[14] Fairlie D., Fletcher P., Zachos C., “Trigonometric structure constants for new infinite algebras”, Phys. Lett. B, 218 (1989), 203–206 ; Hoppe J., “${\rm Diff}_A T^2$ and the curvature of some infinite dimensional manifolds”, Phys. Lett. B, 215 (1988), 706–710 | DOI | MR | Zbl | DOI | MR

[15] Bordemann M., Hoppe J., Schaller P., Schlichenmaier M., “$gl(\infty)$ and geometric quantization”, Comm. Math. Phys., 138 (1991), 209–244 ; Bordemann M., Meinrenken E., Schlichenmaier M., “Toeplitz quantization of Kähler manifolds and $gl(N)$, $N\to\infty$, limits”, Comm. Math. Phys., 165 (1994), 281–296 ; ; Hoppe J., Olshanetsky M., Theisen S., “Dynamical systems on quantum tori algebras”, Comm. Math. Phys., 155 (1993), 429–448 hep-th/9309134 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[16] Carter R., Segal G., Macdonald I., Lectures on Lie groups and Lie algebras, London Mathematical Society Student Texts, 32, Cambridge University Press, Cambridge, 1995 | MR | Zbl

[17] Witten E., “Bound states of strings and $p$-branes”, Nuclear Phys. B, 460 (1996), 335–350 ; hep-th/9510135 | DOI | MR | Zbl

[18] Banks T., Fischler W., Shenker S., Susskind L., “M-theory as a matrix model: a conjecture”, Phys. Rev. D, 55 (1997), 5112–5128 ; hep-th/9610043 | DOI | MR

[19] Galaviz I., García-Compeán H., Przanowski M., Turrubiates F., “Weyl–Wigner–Moyal formalism for Fermi classical systems”, Ann. Physics, 323 (2008), 267–290 ; ; Galaviz I., García-Compeán H., Przanowski M., Turrubiates F., Deformation quantization of Fermi fields, ; Sánchez L., Galaviz I., García-Compeán H., Deformation quantization of relativistic particles in electromagnetic fields, hep-th/0612245hep-th/0703125arXiv:0705.2259 | DOI | MR | Zbl

[20] Isidro J. M., Fernández de Córdoba P., Dirichlet branes and a cohomological definition of time flow, arXiv:0712.1961