@article{SIGMA_2008_4_a39,
author = {Jos\'e M. Isidro and Pedro Fern\'andez de C\'ordoba},
title = {Quantum {Dynamics} on the {Worldvolume} from {Classical} $\mathrm{su}(n)$ {Cohomology}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2008},
volume = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a39/}
}
TY - JOUR
AU - José M. Isidro
AU - Pedro Fernández de Córdoba
TI - Quantum Dynamics on the Worldvolume from Classical $\mathrm{su}(n)$ Cohomology
JO - Symmetry, integrability and geometry: methods and applications
PY - 2008
VL - 4
UR - http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a39/
LA - en
ID - SIGMA_2008_4_a39
ER -
%0 Journal Article
%A José M. Isidro
%A Pedro Fernández de Córdoba
%T Quantum Dynamics on the Worldvolume from Classical $\mathrm{su}(n)$ Cohomology
%J Symmetry, integrability and geometry: methods and applications
%D 2008
%V 4
%U http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a39/
%G en
%F SIGMA_2008_4_a39
José M. Isidro; Pedro Fernández de Córdoba. Quantum Dynamics on the Worldvolume from Classical $\mathrm{su}(n)$ Cohomology. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a39/
[1] Wigner E., “On the quantum correction for thermodynamic equilibrium”, Phys. Rev., 40 (1932), 749–759 | DOI
[2] Groenewold H., “On the principles of elementary quantum mechanics”, Physica, 12 (1946), 405–460 | DOI | MR | Zbl
[3] Moyal J., “Quantum mechanics as a statistical theory”, Proc. Camb. Phil. Soc., 45 (1949), 99–124 | DOI | MR | Zbl
[4] Bayen F., Flato M., Fronsdal C., Lichnerowicz A., Sternheimer D., “Deformation theory and quantization. I. Deformations of symplectic structures”, Ann. Physics, 111 (1978), 61–110 | DOI | MR | Zbl
[5] Kontsevich M., “Deformation quantization of Poisson manifolds”, Lett. Math. Phys., 66 (2003), 157–216 ; q-alg/9709040 | DOI | MR | Zbl
[6] Cattaneo A., Keller B., Torossian C., Bruguières A., Déformation, quantification, théorie de Lie, Panoramas et Synthèses, 20, Société Mathématique de France, Paris, 2005 | MR | Zbl
[7] Dito G., Sternheimer D., Deformation quantization: genesis, developments and metamorphoses, math.QA/0201168 | MR
[8] Nambu Y., “Generalized Hamiltonian dynamics”, Phys. Rev. D, 7 (1973), 2405–2412 | DOI | MR | Zbl
[9] Curtright T., Zachos C., “Classical and quantum Nambu mechanics”, Phys. Rev. D, 68 (2003), 085001, 29 pp., ages ; hep-th/0212267 | DOI
[10] Knapp A., Lie groups, Lie algebras and cohomology, Princeton University Press, Princeton, 1988 | MR | Zbl
[11] Goldberg S., Curvature and homology, Dover, New York, 1982 | MR
[12] Hoppe J., Quantum theory of a massless relativistic surface and a two dimensional bound state problem, Ph.D. Thesis, MIT, 1982; ; de Wit B., Hoppe J., Nicolai H., “On the quantum mechanics of supermembranes”, Nuclear Phys. B, 305 (1988), 545–581 ; de Witt B., “Supermembranes and supermatrix models”, Quantum Aspects of Gauge Theories, Supersymmetry and Unification, eds. A. Ceresole, C. Kounnas, D. Lüst and S. Theisen, Springer, Berlin, 1999, 45–69 http://www.aei.mpg.de/~hoppe | DOI | MR | MR
[13] Hoppe J., “On M-algebras, the quantisation of Nambu mechanics, and volume preserving diffeomorphisms”, Helv. Phys. Acta, 70 (1997), 302–317 ; ; Hoppe J., Membranes and matrix models, hep-th/9602020hep-th/0206192 | MR | Zbl
[14] Fairlie D., Fletcher P., Zachos C., “Trigonometric structure constants for new infinite algebras”, Phys. Lett. B, 218 (1989), 203–206 ; Hoppe J., “${\rm Diff}_A T^2$ and the curvature of some infinite dimensional manifolds”, Phys. Lett. B, 215 (1988), 706–710 | DOI | MR | Zbl | DOI | MR
[15] Bordemann M., Hoppe J., Schaller P., Schlichenmaier M., “$gl(\infty)$ and geometric quantization”, Comm. Math. Phys., 138 (1991), 209–244 ; Bordemann M., Meinrenken E., Schlichenmaier M., “Toeplitz quantization of Kähler manifolds and $gl(N)$, $N\to\infty$, limits”, Comm. Math. Phys., 165 (1994), 281–296 ; ; Hoppe J., Olshanetsky M., Theisen S., “Dynamical systems on quantum tori algebras”, Comm. Math. Phys., 155 (1993), 429–448 hep-th/9309134 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl
[16] Carter R., Segal G., Macdonald I., Lectures on Lie groups and Lie algebras, London Mathematical Society Student Texts, 32, Cambridge University Press, Cambridge, 1995 | MR | Zbl
[17] Witten E., “Bound states of strings and $p$-branes”, Nuclear Phys. B, 460 (1996), 335–350 ; hep-th/9510135 | DOI | MR | Zbl
[18] Banks T., Fischler W., Shenker S., Susskind L., “M-theory as a matrix model: a conjecture”, Phys. Rev. D, 55 (1997), 5112–5128 ; hep-th/9610043 | DOI | MR
[19] Galaviz I., García-Compeán H., Przanowski M., Turrubiates F., “Weyl–Wigner–Moyal formalism for Fermi classical systems”, Ann. Physics, 323 (2008), 267–290 ; ; Galaviz I., García-Compeán H., Przanowski M., Turrubiates F., Deformation quantization of Fermi fields, ; Sánchez L., Galaviz I., García-Compeán H., Deformation quantization of relativistic particles in electromagnetic fields, hep-th/0612245hep-th/0703125arXiv:0705.2259 | DOI | MR | Zbl
[20] Isidro J. M., Fernández de Córdoba P., Dirichlet branes and a cohomological definition of time flow, arXiv:0712.1961