@article{SIGMA_2008_4_a37,
author = {Alexander Shapovalov and Andrey Trifonov and Elena Masalova},
title = {Nonlinear {Fokker{\textendash}Planck} {Equation} in the {Model} of {Asset} {Returns}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2008},
volume = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a37/}
}
TY - JOUR AU - Alexander Shapovalov AU - Andrey Trifonov AU - Elena Masalova TI - Nonlinear Fokker–Planck Equation in the Model of Asset Returns JO - Symmetry, integrability and geometry: methods and applications PY - 2008 VL - 4 UR - http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a37/ LA - en ID - SIGMA_2008_4_a37 ER -
%0 Journal Article %A Alexander Shapovalov %A Andrey Trifonov %A Elena Masalova %T Nonlinear Fokker–Planck Equation in the Model of Asset Returns %J Symmetry, integrability and geometry: methods and applications %D 2008 %V 4 %U http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a37/ %G en %F SIGMA_2008_4_a37
Alexander Shapovalov; Andrey Trifonov; Elena Masalova. Nonlinear Fokker–Planck Equation in the Model of Asset Returns. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a37/
[1] Friedrich R., Peinke J., Renner Ch., “How to quantify deterministic and random influence on the statistics of the foreign exchange market”, Phys. Rev. Lett., 84 (2000), 5224–5227 ; physics/9901034 | DOI
[2] Mantegna R. N., Stanley H. E., An introduction to econophysics. Correlations and complexity in finance, Cambridge University Press, London, 2000 | MR | Zbl
[3] Engle R., “Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation”, Econometrica, 50 (1982), 987–1008 | DOI | MR
[4] Bollersev T., Chous R. Y., Kroner K. F., “ARCH modelling in finance – a review of the theory and empirical evidence”, J. Econometrics, 52 (1992), 5–59 | DOI
[5] Mantegna R.N., Stanley H. E., “Scaling behavior in the dynamics of an economic index”, Nature, 376 (1995), 46–49 | DOI
[6] de Vries D. G., “Stylized facts of nominal exchange rate returns”, The Handbook of International Macroeconomics, ed. F. van der Ploeg, Oxford University Press, Blackwell, 1994 | Zbl
[7] Muzy J.-F., Sornette D., Delour J., Arneodo A., “Multifractal returns and hierarchical portfolio theory”, Quantitative Finance, 1 (2001), 131–148 ; cond-mat/0008069 | DOI | MR
[8] Frank T. D., Nonlinear Fokker–Plank equations, Springer, Berlin, 2004 | MR
[9] Shiino M., Yoshida K., “Chaos-nonchaos phase transitions induced by external noise in ensembles of nonlinearly coupled oscillators”, Phys. Rev. E, 63 (2001), 026210, 6 pp., ages | DOI
[10] Bellucci S., Trifonov A. Yu., “Semiclassically-concentrated solutions for the one-dimensional Fokker–Planck equation with a nonlocal nonlinearity”, J. Phys. A: Math. Gen., 38 (2005), L103–L114 | DOI | MR | Zbl
[11] Shapovalov A. V., Rezaev R. O., Trifonov A. Yu., “Symmetry operators for the Fokker–Plank–Kolmogorov equation with nonlocal quadratic nonlinearity”, SIGMA, 3 (2007), 005, 16 pp., ages ; math-ph/0701012 | MR | Zbl
[12] Sornette D., “Fokker–Planck equation of distributions of financial returns and power laws”, Phys. A, 290 (2001), 211–217 ; cond-mat/0011088 | DOI | MR | Zbl
[13] Sornette D., Critical phenomena in natural sciences. Chaos, fractals, self-organisation, and disorder: concepts and tools, Springer Series in Sinergetics, Springer-Verlag, Berlin, 2000 | MR | Zbl
[14] Gardiner C. W., Stochastic methods, Springer-Verlag, Berlin – Heidelberg – New York – Tokyo, 1985 | MR
[15] Belov V. V., Trifonov A. Yu., Shapovalov A. V., “The trajectory-coherent approximation and the system of moments for the Hartree type equation”, Int. J. Math. Math. Sci., 32 (2002), 325–370 ; math-ph/0012046 | DOI | MR | Zbl
[16] Uhlenbeck G. E., Ornstein L. S., “On the theory of the Brownian motion”, Phys. Rev., 36 (1930), 823–841 | DOI | Zbl