Nonlinear Fokker–Planck Equation in the Model of Asset Returns
Symmetry, integrability and geometry: methods and applications, Tome 4 (2008) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Fokker–Planck equation with diffusion coefficient quadratic in space variable, linear drift coefficient, and nonlocal nonlinearity term is considered in the framework of a model of analysis of asset returns at financial markets. For special cases of such a Fokker–Planck equation we describe a construction of exact solution of the Cauchy problem. In the general case, we construct the leading term of the Cauchy problem solution asymptotic in a formal small parameter in semiclassical approximation following the complex WKB–Maslov method in the class of trajectory concentrated functions.
Keywords: Fokker–Planck equation; semiclassical asymptotics; the Cauchy problem; nonlinear evolution operator; trajectory concentrated functions.
@article{SIGMA_2008_4_a37,
     author = {Alexander Shapovalov and Andrey Trifonov and Elena Masalova},
     title = {Nonlinear {Fokker{\textendash}Planck} {Equation} in the {Model} of {Asset} {Returns}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2008},
     volume = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a37/}
}
TY  - JOUR
AU  - Alexander Shapovalov
AU  - Andrey Trifonov
AU  - Elena Masalova
TI  - Nonlinear Fokker–Planck Equation in the Model of Asset Returns
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2008
VL  - 4
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a37/
LA  - en
ID  - SIGMA_2008_4_a37
ER  - 
%0 Journal Article
%A Alexander Shapovalov
%A Andrey Trifonov
%A Elena Masalova
%T Nonlinear Fokker–Planck Equation in the Model of Asset Returns
%J Symmetry, integrability and geometry: methods and applications
%D 2008
%V 4
%U http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a37/
%G en
%F SIGMA_2008_4_a37
Alexander Shapovalov; Andrey Trifonov; Elena Masalova. Nonlinear Fokker–Planck Equation in the Model of Asset Returns. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a37/

[1] Friedrich R., Peinke J., Renner Ch., “How to quantify deterministic and random influence on the statistics of the foreign exchange market”, Phys. Rev. Lett., 84 (2000), 5224–5227 ; physics/9901034 | DOI

[2] Mantegna R. N., Stanley H. E., An introduction to econophysics. Correlations and complexity in finance, Cambridge University Press, London, 2000 | MR | Zbl

[3] Engle R., “Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation”, Econometrica, 50 (1982), 987–1008 | DOI | MR

[4] Bollersev T., Chous R. Y., Kroner K. F., “ARCH modelling in finance – a review of the theory and empirical evidence”, J. Econometrics, 52 (1992), 5–59 | DOI

[5] Mantegna R.N., Stanley H. E., “Scaling behavior in the dynamics of an economic index”, Nature, 376 (1995), 46–49 | DOI

[6] de Vries D. G., “Stylized facts of nominal exchange rate returns”, The Handbook of International Macroeconomics, ed. F. van der Ploeg, Oxford University Press, Blackwell, 1994 | Zbl

[7] Muzy J.-F., Sornette D., Delour J., Arneodo A., “Multifractal returns and hierarchical portfolio theory”, Quantitative Finance, 1 (2001), 131–148 ; cond-mat/0008069 | DOI | MR

[8] Frank T. D., Nonlinear Fokker–Plank equations, Springer, Berlin, 2004 | MR

[9] Shiino M., Yoshida K., “Chaos-nonchaos phase transitions induced by external noise in ensembles of nonlinearly coupled oscillators”, Phys. Rev. E, 63 (2001), 026210, 6 pp., ages | DOI

[10] Bellucci S., Trifonov A. Yu., “Semiclassically-concentrated solutions for the one-dimensional Fokker–Planck equation with a nonlocal nonlinearity”, J. Phys. A: Math. Gen., 38 (2005), L103–L114 | DOI | MR | Zbl

[11] Shapovalov A. V., Rezaev R. O., Trifonov A. Yu., “Symmetry operators for the Fokker–Plank–Kolmogorov equation with nonlocal quadratic nonlinearity”, SIGMA, 3 (2007), 005, 16 pp., ages ; math-ph/0701012 | MR | Zbl

[12] Sornette D., “Fokker–Planck equation of distributions of financial returns and power laws”, Phys. A, 290 (2001), 211–217 ; cond-mat/0011088 | DOI | MR | Zbl

[13] Sornette D., Critical phenomena in natural sciences. Chaos, fractals, self-organisation, and disorder: concepts and tools, Springer Series in Sinergetics, Springer-Verlag, Berlin, 2000 | MR | Zbl

[14] Gardiner C. W., Stochastic methods, Springer-Verlag, Berlin – Heidelberg – New York – Tokyo, 1985 | MR

[15] Belov V. V., Trifonov A. Yu., Shapovalov A. V., “The trajectory-coherent approximation and the system of moments for the Hartree type equation”, Int. J. Math. Math. Sci., 32 (2002), 325–370 ; math-ph/0012046 | DOI | MR | Zbl

[16] Uhlenbeck G. E., Ornstein L. S., “On the theory of the Brownian motion”, Phys. Rev., 36 (1930), 823–841 | DOI | Zbl