Relative differential $K$-characters
Symmetry, integrability and geometry: methods and applications, Tome 4 (2008) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We define a group of relative differential $K$-characters associated with a smooth map between two smooth compact manifolds. We show that this group fits into a short exact sequence as in the non-relative case. Some secondary geometric invariants are expressed in this theory.
Keywords: geometric $K$-homology; differential $K$-characters.
@article{SIGMA_2008_4_a34,
     author = {Mohamed Maghfoul},
     title = {Relative differential $K$-characters},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2008},
     volume = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a34/}
}
TY  - JOUR
AU  - Mohamed Maghfoul
TI  - Relative differential $K$-characters
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2008
VL  - 4
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a34/
LA  - en
ID  - SIGMA_2008_4_a34
ER  - 
%0 Journal Article
%A Mohamed Maghfoul
%T Relative differential $K$-characters
%J Symmetry, integrability and geometry: methods and applications
%D 2008
%V 4
%U http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a34/
%G en
%F SIGMA_2008_4_a34
Mohamed Maghfoul. Relative differential $K$-characters. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a34/

[1] Atiyah M. F., Patodi V. K., Singer I. M., “Spectral asymmetry and Riemannian geometry. I”, Math. Proc. Cambridge Philos. Soc., 77 (1975), 43–69 | DOI | MR | Zbl

[2] Atiyah M. F., Patodi V. K., Singer I. M., “Spectral asymmetry and Riemannian geometry. II”, Math. Proc. Cambridge Philos. Soc., 78 (1975), 405–432 | DOI | MR | Zbl

[3] Atiyah M. F., Patodi V. K., Singer I. M., “Spectral asymmetry and Riemannian geometry. III”, Math. Proc. Cambridge Philos. Soc., 79 (1976), 71–99 | DOI | MR | Zbl

[4] Asahawa T., Surgimoto S., Terashima S., “D-branes, matrix theory and $K$-homology”, J. High Energy Phys., 2002:3 (2002), 034, 40 pp., ages ; hep-th/0108085 | DOI | MR

[5] Baum P., Douglas R., “$K$-homology and index theory”, Operator Algebras and Applications, Proc. Sympos. Pure Math., 38, Amer. Math. Soc., Providence, R.I., 1982, 117–173 | MR

[6] Baum P., Douglas R., “Relative $K$-homology and $C^*$-algebras”, $K$-theory, 5 (1991), 1–46 | DOI | MR | Zbl

[7] Bunke U., Turner P., Willerton S., “Gerbes and homotopy quantum field theories”, Algebr. Geom. Topol., 4 (2004), 407–437 | DOI | MR | Zbl

[8] Benameur M. T., Maghfoul M., “Differential characters in $K$-theory”, Differential Geom. Appl., 24 (2006), 417–432 | DOI | MR | Zbl

[9] Brightwell M., Turner P., “Relative differential characters”, Comm. Anal. Geom., 14 (2006), 269–282 ; math.AT/0408333 | MR | Zbl

[10] Cheeger J., Simons J., “Differential characters and geometric invariants”, Geometry and Topology (1983/84, College Park, Md.), Lecture Notes in Math., 1167, Springer, Berlin, 1985, 50–80 | MR

[11] Chern S. S., Simons J., “Characteristic forms and geometric invariants”, Ann. of Math. (2), 79 (1974), 48–69 | DOI | MR

[12] Harvey R., Lawson B., “Lefschetz–Pontrjagin duality for differential characters”, An. Acad. Brasil. Ciênc., 73 (2001), 145–159 | MR | Zbl

[13] Hopkins M. J., Singer I. M., “Quadratic functions in geometry, topology and M-theory”, J. Differential Geom., 70 (2005), 329–452 ; math.AT/0211216 | MR | Zbl

[14] Lott J., “$\mathbb R/\mathbb Z$-index theory”, Comm. Anal. Geom., 2 (1994), 279–311 | MR | Zbl

[15] Lupercio E., Uribe B., “Differential characters on orbifolds and string connection. I. Global quotients”, Gromov–Witten Theory of Spin Curves and Orbifolds (May 3–4, 2003, San Francisco, CA, USA), Contemp. Math., 403, eds. T. J. Jarvis et al., Amer. Math. Soc., Providence, 2006, 127–142 ; math.DG/0311008 | MR | Zbl

[16] Periwal V., “$D$-branes charges and $K$-homology”, J. High Energy Phys., 2000:7 (2000), 041, 6 pp., ages ; hep-th/9805170 | DOI | MR | Zbl

[17] Reis R. M., Szabo R. J., “Geometric $K$-homology of flat $D$-branes”, Comm. Math. Phys., 266 (2006), 71–122 ; hep-th/0507043 | DOI | MR | Zbl