@article{SIGMA_2008_4_a34,
author = {Mohamed Maghfoul},
title = {Relative differential $K$-characters},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2008},
volume = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a34/}
}
Mohamed Maghfoul. Relative differential $K$-characters. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a34/
[1] Atiyah M. F., Patodi V. K., Singer I. M., “Spectral asymmetry and Riemannian geometry. I”, Math. Proc. Cambridge Philos. Soc., 77 (1975), 43–69 | DOI | MR | Zbl
[2] Atiyah M. F., Patodi V. K., Singer I. M., “Spectral asymmetry and Riemannian geometry. II”, Math. Proc. Cambridge Philos. Soc., 78 (1975), 405–432 | DOI | MR | Zbl
[3] Atiyah M. F., Patodi V. K., Singer I. M., “Spectral asymmetry and Riemannian geometry. III”, Math. Proc. Cambridge Philos. Soc., 79 (1976), 71–99 | DOI | MR | Zbl
[4] Asahawa T., Surgimoto S., Terashima S., “D-branes, matrix theory and $K$-homology”, J. High Energy Phys., 2002:3 (2002), 034, 40 pp., ages ; hep-th/0108085 | DOI | MR
[5] Baum P., Douglas R., “$K$-homology and index theory”, Operator Algebras and Applications, Proc. Sympos. Pure Math., 38, Amer. Math. Soc., Providence, R.I., 1982, 117–173 | MR
[6] Baum P., Douglas R., “Relative $K$-homology and $C^*$-algebras”, $K$-theory, 5 (1991), 1–46 | DOI | MR | Zbl
[7] Bunke U., Turner P., Willerton S., “Gerbes and homotopy quantum field theories”, Algebr. Geom. Topol., 4 (2004), 407–437 | DOI | MR | Zbl
[8] Benameur M. T., Maghfoul M., “Differential characters in $K$-theory”, Differential Geom. Appl., 24 (2006), 417–432 | DOI | MR | Zbl
[9] Brightwell M., Turner P., “Relative differential characters”, Comm. Anal. Geom., 14 (2006), 269–282 ; math.AT/0408333 | MR | Zbl
[10] Cheeger J., Simons J., “Differential characters and geometric invariants”, Geometry and Topology (1983/84, College Park, Md.), Lecture Notes in Math., 1167, Springer, Berlin, 1985, 50–80 | MR
[11] Chern S. S., Simons J., “Characteristic forms and geometric invariants”, Ann. of Math. (2), 79 (1974), 48–69 | DOI | MR
[12] Harvey R., Lawson B., “Lefschetz–Pontrjagin duality for differential characters”, An. Acad. Brasil. Ciênc., 73 (2001), 145–159 | MR | Zbl
[13] Hopkins M. J., Singer I. M., “Quadratic functions in geometry, topology and M-theory”, J. Differential Geom., 70 (2005), 329–452 ; math.AT/0211216 | MR | Zbl
[14] Lott J., “$\mathbb R/\mathbb Z$-index theory”, Comm. Anal. Geom., 2 (1994), 279–311 | MR | Zbl
[15] Lupercio E., Uribe B., “Differential characters on orbifolds and string connection. I. Global quotients”, Gromov–Witten Theory of Spin Curves and Orbifolds (May 3–4, 2003, San Francisco, CA, USA), Contemp. Math., 403, eds. T. J. Jarvis et al., Amer. Math. Soc., Providence, 2006, 127–142 ; math.DG/0311008 | MR | Zbl
[16] Periwal V., “$D$-branes charges and $K$-homology”, J. High Energy Phys., 2000:7 (2000), 041, 6 pp., ages ; hep-th/9805170 | DOI | MR | Zbl
[17] Reis R. M., Szabo R. J., “Geometric $K$-homology of flat $D$-branes”, Comm. Math. Phys., 266 (2006), 71–122 ; hep-th/0507043 | DOI | MR | Zbl