@article{SIGMA_2008_4_a33,
author = {Gloria Mar{\'\i} Beffa},
title = {Geometric {Realizations} of {Bi-Hamiltonian} {Completely} {Integrable} {Systems}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2008},
volume = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a33/}
}
Gloria Marí Beffa. Geometric Realizations of Bi-Hamiltonian Completely Integrable Systems. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a33/
[1] Anco S., “Hamiltonian flows of curves in $G/SO(N)$ and vector soliton equations of mKdV and sine-Gordon type”, SIGMA, 2 (2006), 044, 18 pp., ages ; nlin.SI/0512046 | MR | Zbl
[2] Anco S., “Bi-Hamiltonian operators, integrable flows of curves using moving frames and geometric map equations”, J. Phys. A: Math. Gen., 39 (2006), 2043–2072 ; nlin.SI/0512051 | DOI | MR | Zbl
[3] Arms R. J., Hama F. R., “Localized-induction concept on a curved vortex and motion of an elliptic vortex ring”, Phys. Fluids, 8 (1965), 553–559 | DOI
[4] Baston R. J., “Almost Hermitian symmetric manifolds. I. Local twistor theory”, Duke Math. J., 63 (1991), 81–112 | DOI | MR | Zbl
[5] Bailey T. N., Eastwood M. G., “Conformal circles and parametrizations of curves in conformal manifolds”, Proc. Amer. Math. Soc., 108 (1990), 215–222 | DOI | MR
[6] Bailey T. N., Eastwood M. G., “Complex paraconformal manifolds – their differential geometry and twistor theory”, Forum Math., 3 (1991), 61–103 | DOI | MR | Zbl
[7] Calini A., Ivey T., Marí Beffa G., “Remarks on KdV-type flows on star-shaped curves”, Physica D, 238:8 (2009), 788–797 | DOI | MR | Zbl
[8] Cartan É., La Méthode du Repère Mobile, la Théorie des Groupes Continus, et les Espaces Généralisés, Exposés de Géométrie, no. 5, Hermann, Paris, 1935
[9] Cartan É., La Théorie des Groupes Finis et Continus et la Géométrie Différentielle Traitées par la Méthode du Repère Mobile, Cahiers Scientifiques, 18, Gauthier-Villars, Paris, 1937
[10] Cartan É., “Les espaces à connexion conforme”, Oeuvres Complètes, III.1, Gauthier-Villars, Paris, 1955, 747–797
[11] Doliwa A., Santini P. M., “An elementary geometric characterization of the integrable motions of a curve”, Phys. Lett. A, 185 (1994), 373–384 | DOI | MR | Zbl
[12] Drinfel'd V. G., Sokolov V. V., “Lie algebras and equations of Korteweg–de Vries type”, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh., 24, VINITI, Moscow, 1984, 81–180 (in Russian) | MR
[13] Ferapontov E. V., “Isoparametric hypersurfaces in spheres, integrable non-diagonalizable systems of hydrodynamic type, and $N$-wave systems”, Differential Geom. Appl., 5 (1995), 335–369 | DOI | MR | Zbl
[14] Fels M., Olver P. J., “Moving coframes. I. A practical algorithm”, Acta Appl. Math., 51 (1998), 161–213 | DOI | MR
[15] Fels M., Olver P. J., “Moving coframes. II. Regularization and theoretical foundations”, Acta Appl. Math., 55 (1999), 127–208 | DOI | MR | Zbl
[16] Fialkov A., “The conformal theory of curves”, Trans. Amer. Math. Soc., 51 (1942), 435–501 | DOI | MR
[17] Gay-Balmaz F., Ratiu T. S., “Group actions on chains of Banach manifolds and applications to fluid dynamics”, Ann. Global Anal. Geom., 31:3 (2007), 287–328 | DOI | MR | Zbl
[18] González-López A., Hernández Heredero R., Marí Beffa G., “Invariant differential equations and the Adler–Gel'fand–Dikii bracket”, J. Math. Phys., 38 (1997), 5720–5738 ; hep-th/9603199 | DOI | MR | Zbl
[19] Griffiths P. A., “On Cartan's method of Lie groups and moving frames as applied to uniqueness and existence questions in differential geometry”, Duke Math. J., 41 (1974), 775–814 | DOI | MR | Zbl
[20] Green M. L., “The moving frame, differential invariants and rigidity theorems for curves in homogeneous spaces”, Duke Math. J., 45 (1978), 735–779 | DOI | MR | Zbl
[21] Hasimoto R., “A soliton on a vortex filament”, J. Fluid Mech., 51 (1972), 477–485 | DOI | Zbl
[22] Hitchin N. J., Segal G. B., Ward R. S., Integrable systems: twistors, loop groups and riemann surfaces, Oxford Graduate Texts in Mathematics, Clarendon Press, Oxford, 1999 | MR | Zbl
[23] Hubert E., Generation properties of differential invariants in the moving frame methods, Preprint
[24] Ivey T. A., “Integrable geometric evolution equations for curves”, Contemp. Math., 285, 2001, 71–84 | MR | Zbl
[25] Chou K.-S., Qu C., “Integrable equations arising from motions of plane curves”, Phys. D, 162 (2002), 9–33 | DOI | MR | Zbl
[26] Chou K.-S., Qu C., “Integrable equations arising from motions of plane curves. II”, J. Nonlinear Sci., 13 (2003), 487–517 | DOI | MR | Zbl
[27] Kobayashi S., Nagano T., “On filtered Lie algebras and geometric structures. I”, J. Math. Mech., 13 (1964), 875–907 | MR | Zbl
[28] Langer J., Perline R., “Poisson geometry of the filament equation”, J. Nonlinear Sci., 1 (1991), 71–93 | DOI | MR | Zbl
[29] Langer J., Perline R., “Geometric realizations of Fordy–Kulish nonlinear Schrödinger systems”, Pacific J. Math., 195 (2000), 157–178 | DOI | MR | Zbl
[30] Magri F., “A simple model of the integrable Hamiltonian equation”, J. Math. Phys., 19 (1978), 1156–1162 | DOI | MR | Zbl
[31] Marí Beffa G., Hamiltonian structures on the space of differential invariants of curves in flat semisimple homogenous manifolds, Asian J. Math. to appear
[32] Marí Beffa G., “Poisson geometry of differential invariants of curves in some nonsemisimple homogenous spaces”, Proc. Amer. Math. Soc., 134 (2006), 779–791 | DOI | MR | Zbl
[33] Marí Beffa G., “Projective-type differential invariants and geometric curve evolutions of KdV-type in flat homogeneous manifolds”, Ann. Inst. Fourier (Grenoble), 58:4 (2008), 1295–1335 | MR | Zbl
[34] Marí Beffa G., “On completely integrable geometric evolutions of curves of Lagrangian planes”, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 111–131 | MR | Zbl
[35] Marí Beffa G., “Poisson brackets associated to the conformal geometry of curves”, Trans. Amer. Math. Soc., 357 (2005), 2799–2827 | DOI | MR | Zbl
[36] Marí Beffa G., “The theory of differential invariants and KdV Hamiltonian evolutions”, Bull. Soc. Math. France, 127 (1999), 363–391 | MR | Zbl
[37] Marí Beffa G., Completely integrable curve flows in $O(2n+1,2n+1)/H$, in preparation
[38] Marí Beffa G., Sanders J., Wang J. P., “Integrable systems in three-dimensional Riemannian geometry”, J. Nonlinear Sci., 12 (2002), 143–167 | DOI | MR | Zbl
[39] Marsden J. E., Weinstein A., “Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids”, Phys. D, 7 (1983), 305–323 | DOI | MR
[40] Olver P. J., Applications of Lie groups to differential equations, Graduate Texts in Mathematics, Springer-Verlag, 1986 | MR
[41] Olver P., Invariant variational problems and integrable curve flows, presentation, Cocoyoc, Mexico, 2005
[42] Ochiai T., “Geometry associated with semisimple flat homogeneous spaces”, Trans. Amer. Math. Soc., 152 (1970), 159–193 | DOI | MR | Zbl
[43] Ovsienko V., “Lagrange Schwarzian derivative and symplectic Sturm theory”, Ann. Fac. Sci. Toulouse Math. (6), 6 (1993), 73–96 | MR | Zbl
[44] Pinkall U., “Hamiltonian flows on the space of star-shaped curves”, Results Math., 27 (1995), 328–332 | MR | Zbl
[45] Pressley A., Segal G., Loop groups, Graduate Texts in Mathematics, Springer, 1997
[46] Sanders J., Wang J. P., “Integrable systems in $n$-dimensional Riemannian geometry”, Moscow Math. J., 3:4 (2003), 1369–1393 ; math.AP/0301212 | MR | Zbl
[47] Terng C. L., Thorbergsson G., “Completely integrable flows on adjoint orbits”, Results Math., 40 (2001), 286–309 ; math.DG/0108154 | MR | Zbl
[48] Terng C. L., Uhlenbeck K., “Schrödinger flows on Grassmannians”, Integrable Systems, Geometry and Topology, AMS/IP Stud. Adv. Math., 36, Amer. Math. Soc., Providence, 2006, 235–256 ; math.DG/9901086 | MR | Zbl
[49] Terng C. L., Uhlenbeck K., “Bäcklund transformations and loop group actions”, Comm. Pure Appl. Math., 53 (2000), 1–75 ; math.DG/9805074 | 3.0.CO;2-U class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[50] Wilczynski E. J., Projective differential geometry of curves and ruled surfaces, B. G. Teubner, Leipzig, 1906 | Zbl
[51] Yasui Y., Sasaki N., “Differential geometry of the vortex filament equation”, J. Geom. Phys., 28 (1998), 195–207 ; hep-th/9611073 | DOI | MR | Zbl