The Fundamental $k$-Form and Global Relations
Symmetry, integrability and geometry: methods and applications, Tome 4 (2008) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In [Proc. Roy. Soc. London Ser. A 453 (1997), no. 1962, 1411–1443] A. S. Fokas introduced a novel method for solving a large class of boundary value problems associated with evolution equations. This approach relies on the construction of a so-called global relation: an integral expression that couples initial and boundary data. The global relation can be found by constructing a differential form dependent on some spectral parameter, that is closed on the condition that a given partial differential equation is satisfied. Such a diferential form is said to be fundamental [Quart. J. Mech. Appl. Math. 55 (2002), 457–479]. We give an algorithmic approach in constructing a fundamental $k$-form associated with a given boundary value problem, and address issues of uniqueness. Also, we extend a result of Fokas and Zyskin to give an integral representation to the solution of a class of boundary value problems, in an arbitrary number of dimensions. We present an extended example using these results in which we construct a global relation for the linearised Navier–Stokes equations.
Keywords: fundamental $k$-form; global relation; boundary value problems.
@article{SIGMA_2008_4_a32,
     author = {Anthony C. L. Ashton},
     title = {The {Fundamental} $k${-Form} and {Global} {Relations}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2008},
     volume = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a32/}
}
TY  - JOUR
AU  - Anthony C. L. Ashton
TI  - The Fundamental $k$-Form and Global Relations
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2008
VL  - 4
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a32/
LA  - en
ID  - SIGMA_2008_4_a32
ER  - 
%0 Journal Article
%A Anthony C. L. Ashton
%T The Fundamental $k$-Form and Global Relations
%J Symmetry, integrability and geometry: methods and applications
%D 2008
%V 4
%U http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a32/
%G en
%F SIGMA_2008_4_a32
Anthony C. L. Ashton. The Fundamental $k$-Form and Global Relations. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a32/

[1] Dickey L. A., Soliton equations and Hamiltonian systems, 2nd ed., Advanced Series in Mathematical Physics, 26, World Scientific, River Edge, NJ, 2003 | MR | Zbl

[2] Ehrenpreis L., Fourier analysis in several complex variables, Wiley-Interscience Publishers, New York, 1970 | MR | Zbl

[3] Fokas A. S., “A unified transform method for solving linear and certain nonlinear PDEs”, Proc. Roy. Soc. London Ser. A, 453:1962 (1997), 1411–1443 | DOI | MR | Zbl

[4] Fokas A. S., Pelloni B., “Generalized Dirichlet to Neumann map for moving initial-boundary value problems”, J. Math. Phys., 48 (2007), 013502, 14 pp., ages ; math-ph/0611009 | DOI | MR | Zbl

[5] Fokas A. S., Zyskin M., “The fundamental differential form and boundary-value problems”, Quart. J. Mech. Appl. Math., 55 (2002), 457–479 | DOI | MR | Zbl