@article{SIGMA_2008_4_a32,
author = {Anthony C. L. Ashton},
title = {The {Fundamental} $k${-Form} and {Global} {Relations}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2008},
volume = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a32/}
}
Anthony C. L. Ashton. The Fundamental $k$-Form and Global Relations. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a32/
[1] Dickey L. A., Soliton equations and Hamiltonian systems, 2nd ed., Advanced Series in Mathematical Physics, 26, World Scientific, River Edge, NJ, 2003 | MR | Zbl
[2] Ehrenpreis L., Fourier analysis in several complex variables, Wiley-Interscience Publishers, New York, 1970 | MR | Zbl
[3] Fokas A. S., “A unified transform method for solving linear and certain nonlinear PDEs”, Proc. Roy. Soc. London Ser. A, 453:1962 (1997), 1411–1443 | DOI | MR | Zbl
[4] Fokas A. S., Pelloni B., “Generalized Dirichlet to Neumann map for moving initial-boundary value problems”, J. Math. Phys., 48 (2007), 013502, 14 pp., ages ; math-ph/0611009 | DOI | MR | Zbl
[5] Fokas A. S., Zyskin M., “The fundamental differential form and boundary-value problems”, Quart. J. Mech. Appl. Math., 55 (2002), 457–479 | DOI | MR | Zbl