Equivariance, Variational Principles, and the Feynman Integral
Symmetry, integrability and geometry: methods and applications, Tome 4 (2008) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We argue that the variational calculus leading to Euler's equations and Noether's theorem can be replaced by equivariance and invariance conditions avoiding the action integral. We also speculate about the origin of Lagrangian theories in physics and their connection to Feynman's integral.
Keywords: Lagrangians; calculus of variations; Euler's equations; Noether's theorem; equivariance; Feynman's integral.
@article{SIGMA_2008_4_a31,
     author = {George Svetlichny},
     title = {Equivariance, {Variational} {Principles,} and the {Feynman} {Integral}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2008},
     volume = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a31/}
}
TY  - JOUR
AU  - George Svetlichny
TI  - Equivariance, Variational Principles, and the Feynman Integral
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2008
VL  - 4
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a31/
LA  - en
ID  - SIGMA_2008_4_a31
ER  - 
%0 Journal Article
%A George Svetlichny
%T Equivariance, Variational Principles, and the Feynman Integral
%J Symmetry, integrability and geometry: methods and applications
%D 2008
%V 4
%U http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a31/
%G en
%F SIGMA_2008_4_a31
George Svetlichny. Equivariance, Variational Principles, and the Feynman Integral. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a31/

[1] Saunders D. J., The geometry of jet bundles, Cambridge University Press, 1989 | MR | Zbl

[2] Olver P. J., Equivalence, invariants and symmetry, Cambridge University Press, 1995 | MR | Zbl

[3] Svetlichny G., Feynman's integral is about mutually unbiased bases, arXiv:0708.3079

[4] Kolar I., Michor P. W., Slovak J., Natural operations in differential geometry, Springer, New York, 1993 ; available at http://www.emis.de/monographs/KSM/ | MR

[5] Olver P. J., Applications of Lie groups to differential equations, Springer, New York, 1986 | MR

[6] Otterson P., Svetlichny G., “On derivative-dependent infinitesimal deformations of differentiable maps”, J. Differential Equations, 36 (1980), 270–294 | DOI | MR | Zbl

[7] Svetlichny G., “Why Lagrangians?”, Proceedings XXVI Workshop on Geometrical Methods in Physics (July 1–7, 2007, Bialowieza, Poland), AIP Conference Proceedings, 956, eds. P. Kielanowski, A. Odzijewicz, M. Schlichenmeier and T. Voronov, AIP, New York, 2007, 120–125 | MR | Zbl

[8] Bengtsson I., Three ways to look at mutually unbiased bases, quant-ph/0610216 | MR