@article{SIGMA_2008_4_a31,
author = {George Svetlichny},
title = {Equivariance, {Variational} {Principles,} and the {Feynman} {Integral}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2008},
volume = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a31/}
}
George Svetlichny. Equivariance, Variational Principles, and the Feynman Integral. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a31/
[1] Saunders D. J., The geometry of jet bundles, Cambridge University Press, 1989 | MR | Zbl
[2] Olver P. J., Equivalence, invariants and symmetry, Cambridge University Press, 1995 | MR | Zbl
[3] Svetlichny G., Feynman's integral is about mutually unbiased bases, arXiv:0708.3079
[4] Kolar I., Michor P. W., Slovak J., Natural operations in differential geometry, Springer, New York, 1993 ; available at http://www.emis.de/monographs/KSM/ | MR
[5] Olver P. J., Applications of Lie groups to differential equations, Springer, New York, 1986 | MR
[6] Otterson P., Svetlichny G., “On derivative-dependent infinitesimal deformations of differentiable maps”, J. Differential Equations, 36 (1980), 270–294 | DOI | MR | Zbl
[7] Svetlichny G., “Why Lagrangians?”, Proceedings XXVI Workshop on Geometrical Methods in Physics (July 1–7, 2007, Bialowieza, Poland), AIP Conference Proceedings, 956, eds. P. Kielanowski, A. Odzijewicz, M. Schlichenmeier and T. Voronov, AIP, New York, 2007, 120–125 | MR | Zbl
[8] Bengtsson I., Three ways to look at mutually unbiased bases, quant-ph/0610216 | MR