Generalized Symmetries of Massless Free Fields on Minkowski Space
Symmetry, integrability and geometry: methods and applications, Tome 4 (2008) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A complete and explicit classification of generalized, or local, symmetries of massless free fields of spin $s\geq1/2$ is carried out. Up to equivalence, these are found to consists of the conformal symmetries and their duals, new chiral symmetries of order $2s$, and their higher-order extensions obtained by Lie differentiation with respect to conformal Killing vectors. In particular, the results yield a complete classification of generalized symmetries of the Dirac–Weyl neutrino equation, Maxwell's equations, and the linearized gravity equations.
Keywords: generalized symmetries; massless free field; spinor field.
@article{SIGMA_2008_4_a3,
     author = {Juha Pohjanpelto and Stephen C. Anco},
     title = {Generalized {Symmetries} of {Massless} {Free} {Fields} on {Minkowski} {Space}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2008},
     volume = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a3/}
}
TY  - JOUR
AU  - Juha Pohjanpelto
AU  - Stephen C. Anco
TI  - Generalized Symmetries of Massless Free Fields on Minkowski Space
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2008
VL  - 4
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a3/
LA  - en
ID  - SIGMA_2008_4_a3
ER  - 
%0 Journal Article
%A Juha Pohjanpelto
%A Stephen C. Anco
%T Generalized Symmetries of Massless Free Fields on Minkowski Space
%J Symmetry, integrability and geometry: methods and applications
%D 2008
%V 4
%U http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a3/
%G en
%F SIGMA_2008_4_a3
Juha Pohjanpelto; Stephen C. Anco. Generalized Symmetries of Massless Free Fields on Minkowski Space. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a3/

[1] Anco S. C., Pohjanpelto J., “Classification of local conservation laws of Maxwell's equations”, Acta Appl. Math., 69 (2001), 285–327 ; math-ph/0108017 | DOI | MR | Zbl

[2] Anco S. C., Pohjanpelto J., “Conserved currents of massless fields of spin $s\geq 1/2$”, Proc. R. Soc. Lond. A, 459 (2003), 1215–1239 ; math-ph/0202019 | DOI | MR | Zbl

[3] Anco S. C., Pohjanpelto J., “Symmetries and currents of massless neutrino fields, electromagnetic and graviton fields”, Symmetry in Physics, CRM Proceedings and Lecture Notes, 34, eds. P. Winternitz, J. Harnad, C. S. Lam and J. Patera, AMS, Providence, RI, 2004, 1–12 ; math-ph/0306072 | MR | Zbl

[4] Anderson I. M., Torre C. G., “Classification of local generalized symmetries for the vacuum Einstein equations”, Comm. Math. Phys., 176 (1996), 479–539 ; gr-qc/9404030 | DOI | MR | Zbl

[5] Benn I. M., Kress J. M., “First order Dirac symmetry operators”, Classical Quantum Gravity, 21 (2004), 427–431 | DOI | MR | Zbl

[6] Bluman G., Anco S. C., Symmetry and integration methods for differential equations, Springer, New York, 2002 | MR | Zbl

[7] Durand S., Lina J.-M., Vinet L., “Symmetries of the massless Dirac equations in Minkowski space”, Phys. Rev. D, 38 (1988), 3837–3839 | DOI | MR

[8] Fushchich W. I., Nikitin A. G., “On the new invariance algebras and superalgebras of relativistic wave equations”, J. Phys. A: Math. Gen., 20 (1987), 537–549 | DOI | MR | Zbl

[9] Kalnins E. G., Miller W. Jr., Williams G. C., “Matrix operator symmetries of the Dirac equation and separation of variables”, J. Math. Phys., 27 (1986), 1893–1900 | DOI | MR | Zbl

[10] Kalnins E. G., McLenaghan R. G., Williams G. C., “Symmetry operators for Maxwell's equations on curved space-time”, Proc. R. Soc. Lond. A, 439 (1992), 103–113 | DOI | MR | Zbl

[11] Kumei S., “Invariance transformations, invariance group transformations and invariance groups of the sine-Gordon equations”, J. Math. Phys., 16 (1975), 2461–2468 | DOI | MR

[12] Martina L., Sheftel M. B., Winternitz P., “Group foliation and non-invariant solutions of the heavenly equation”, J. Phys. A: Math. Gen., 34 (2001), 9243–9263 ; math-ph/0108004 | DOI | MR | Zbl

[13] Mikhailov A. V., Shabat A. B., Sokolov V. V., “The symmetry approach to classification of integrable equations”, What Is Integrability?, ed. V. E. Zakharov, Springer, Berlin, 1991, 115–184 | MR | Zbl

[14] Miller W. Jr., Symmetry and separation of variables, Addison-Wesley, Reading, Mass., 1977 | MR | Zbl

[15] Nikitin A. G., “A complete set of symmetry operators for the Dirac equation”, Ukrainian Math. J., 43 (1991), 1287–1296 | DOI | MR | Zbl

[16] Olver P. J., Applications of Lie groups to differential equations, 2nd ed., Springer, New York, 1993 | MR

[17] Penrose R., Rindler W., Spinors and space-time. Vol. 1: Two-spinor calculus and relativistic fields, Vol. 2: Spinor and twistor methods in space-time geometry, Cambridge University Press, Cambridge, 1984 | MR | Zbl

[18] Pohjanpelto J., “Symmetries, conservation laws, and Maxwell's equations”, Advanced Electromagnetism: Foundations, Theory and Applications, eds. T. W. Barrett and D. M. Grimes, World Scientific, Singapore, 1995, 560–589

[19] Pohjanpelto J., “Classification of generalized symmetries of the Yang–Mills fields with a semi-simple structure group”, Differential Geom. Appl., 21 (2004), 147–171 ; math-ph/0109021 | DOI | MR | Zbl

[20] Ward R. S., Wells R. O. Jr., Twistor geometry and field theory, Cambridge University Press, Cambridge, 1990 | MR