@article{SIGMA_2008_4_a29,
author = {Cornelia Vizman},
title = {Geodesic {Equations} on {Diffeomorphism} {Groups}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2008},
volume = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a29/}
}
Cornelia Vizman. Geodesic Equations on Diffeomorphism Groups. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a29/
[1] Alekseevsky A., Michor P. W., Ruppert W., “Extensions of super Lie algebras”, J. Lie Theory, 15 (2005), 125–134 ; math.QA/0101190 | MR | Zbl
[2] Arnold V. I., “Sur la géométrie differentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits”, Ann. Inst. Fourier (Grenoble), 16 (1966), 319–361 | MR
[3] Arnold V. I., Khesin B. A., Topological methods in hydrodynamics, Springer, Berlin, 1998 | MR
[4] Bao D., Ratiu T., “On the geometrical origin of a degenerate Monge–Ampère equation”, Proc. Sympos. Pure Math., 54 (1993), 55–68 | MR | Zbl
[5] Billig Y., “Magnetic hydrodynamics with asymmetric stress tensor”, J. Math. Phys., 46 (2005), 043101, 13 pp., ages ; math-ph/0401052 | DOI | MR | Zbl
[6] Brenier Y., “Minimal geodesics on groups of volume-preserving maps and generalized solutions of the Euler equations”, Comm. Pure Appl. Math., 52 (1999), 411–452 | 3.0.CO;2-3 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[7] Burgers J., “A mathematical model illustrating the theory of turbulence”, Adv. Appl. Mech., 1 (1948), 171–199 | DOI | MR
[8] Camassa R., Holm D., “An integrable shallow water equation with peaked solitons”, Phys. Rev. Lett., 71 (1993), 1661–1664 ; patt-sol/9305002 | DOI | MR | Zbl
[9] Constantin A., Kappeler T., Kolev B., Topalov P., “On geodesic exponential maps of the Virasoro group”, Ann. Global Anal. Geom., 31 (2007), 155–180 | DOI | MR | Zbl
[10] Ebin D., Marsden J., “Groups of diffeomorphisms and the motion of an incompressible fluid”, Ann. of Math. (2), 92 (1970), 102–163 | DOI | MR | Zbl
[11] Eliashberg Ya., Ratiu T., “The diameter of the symplectomorphism group is infinite”, Invent. Math., 103 (1991), 327–340 | DOI | MR | Zbl
[12] Fuks D. B., Cohomology of infinite-dimensional lie algebras, Contemp. Sov. Math., Consultants Bureau, New York, 1986 | MR
[13] Gay-Balmaz F., Ratiu T., “The Lie–Poisson structure of the LAE-$\alpha$ equation”, Dyn. Partial Differ. Equ., 2 (2005), 25–57 ; math.DG/0504381 | MR | Zbl
[14] Gay-Balmaz F., Ratiu T., Euler–Poincaré and Lie–Poisson formulations of Euler–Yang–Mills equations, Preprint, 2006
[15] Gay-Balmaz F., Ratiu T., Well posedness of higher dimensional Camassa–Holm equations on manifolds, Preprint, 2007 | MR | Zbl
[16] Haller S., Teichmann J., Vizman C., “Totally geodesic subgroups of diffeomorphisms”, J. Geom. Phys., 42 (2002), 342–354 ; math.DG/0103220 | DOI | MR | Zbl
[17] Hattori Y., “Ideal magnetohydrodynamics and passive scalar motion as geodesics on semidirect product groups”, J. Phys. A: Math. Gen., 27 (1994), L21–L25 | DOI | MR | Zbl
[18] Hirani A. N., Marsden J. E., Arvo J., “Averaged template matching equations”, Proc. Third Int. Workshop EMMCVPR, Lecture Notes Computer Science, 2134, Springer, Berlin–Heidelberg, 2001, 528–543 | Zbl
[19] Holm D., Marsden J., Ratiu T., “The Euler–Poincaré equations and semidirect products with applications to continuum theories”, Adv. Math., 137 (1997), 1–81 ; chao-dyn/9801015 | DOI | MR
[20] Holm D., Marsden J., “Momentum maps and measure-valued solutions (peakons, filaments and sheets) for the EPDiff equation”, Festschrift for Alan Weinstein, Birkhäuser, Boston, 2003, 203–235 ; nlin.CD/0312048 | MR
[21] Holm D., Zeitlin V., “Hamilton's principle for quasigeostrophic motion”, Phys. Fluids, 10 (1998), 800–806 ; chao-dyn/9801018 | DOI | MR | Zbl
[22] Hunter J. K., Saxton R., “Dynamics of director fields”, SIAM J. Appl. Math., 51 (1991), 1498–1521 | DOI | MR | Zbl
[23] Ismagilov R. S., Representations of infinite-dimensional groups, AMS Translations of Mathematical Monographs, 152, American Mathematical Society, Providence, RI, 1996 | MR | Zbl
[24] Ismagilov R. S., “Inductive limits of area-preserving diffeomorphism groups”, Funct. Anal. Appl., 37:3 (2003), 191–202 | DOI | MR | Zbl
[25] Khesin B., Misiolek G., “Euler equations on homogeneous spaces and Virasoro orbits”, Adv. Math., 176 (2003), 116–144 ; math.SG/0210397 | DOI | MR | Zbl
[26] Khesin B., Misiolek G., “Asymptotic directions, Monge–Ampère equations and the geometry of diffeomorphism groups”, J. Math. Fluid. Mech., 7 (2005), S365–S375 ; math.DG/0504556 | DOI | MR | Zbl
[27] Kirillov A. A., “The orbit method. II. Infinite dimensional Lie groups and Lie algebras”, Representation theory of groups and algebras, Contemp. Math., 145, 1993, 33–63 | MR | Zbl
[28] Kriegl A., Michor P. W., The convenient setting of global analysis, Mathematical Surveys and Monographs, 53, Amer. Math. Soc., Providence, RI, 1997 | MR | Zbl
[29] Kouranbaeva S., “The Camassa–Holm equation as a geodesic flow on the diffeomorphism group”, J. Math. Phys., 40 (1999), 857–868 ; math-ph/9807021 | DOI | MR | Zbl
[30] Marsden J., Ratiu T., Introduction to mechanics and symmetry, 2nd ed., Springer, 1999 | MR | Zbl
[31] Marsden J., Ratiu T., Shkoller S., “The geometry and analysis of the averaged Euler equations and a new diffeomorphism group”, Geom. Funct. Anal., 10 (2000), 582–599 ; math.AP/9908103 | DOI | MR | Zbl
[32] Marsden J. E., Ratiu T., Weinstein A., “Semidirect product and reduction in mechanics”, Trans. Amer. Math. Soc., 281 (1984), 147–177 | DOI | MR | Zbl
[33] Michor P. W., Mumford D., “Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms”, Doc. Math., 10 (2005), 217–245 ; math.DG/0409303 | MR | Zbl
[34] Michor P. W., Ratiu T., “On the geometry of the Virasoro–Bott group”, J. Lie Theory, 8 (1998), 293–309 ; math.DG/9801115 | MR | Zbl
[35] Milnor J., “Remarks on infinite-dimensional Lie groups”, Proc. Summer School on Quantum Gravity, ed. B. DeWitt, North Holland, Amsterdam, 1984, 1007–1057 | MR
[36] Misiolek G., “Stability of flows of ideal fluids and the geometry of the group of diffeomorphisms”, Indiana Univ. Math. J., 42 (1993), 215–235 | DOI | MR | Zbl
[37] Misiolek G., “Conjugate points in the Bott–Virasoro group and the KdV equation”, Proc. Amer. Math. Soc., 125 (1997), 935–940 | DOI | MR | Zbl
[38] Misiolek G., “A shallow water equation as a geodesic flow on the Bott–Virasoro group”, J. Geom. Phys., 24 (1998), 203–208 | DOI | MR | Zbl
[39] Misiolek G., “Classical solutions of the periodic Camassa–Holm equation”, Geom. Funct. Anal., 12 (2002), 1080–1104 | DOI | MR | Zbl
[40] Misiolek G., “Conjugate points in $D_\mu(T^2)$”, Proc. Amer. Math. Soc., 124 (1996), 977–982 | DOI | MR | Zbl
[41] Moreau J. J., “Une méthode de “cinématique fonctionnelle” en hydrodynamique”, C. R. Acad. Sci. Paris, 249 (1959), 2156–2158 | MR | Zbl
[42] Nakamura F., Hattori Y., Kambe T., “Geodesics and curvature of a group of diffeomorphisms and motion of an ideal fluid”, J. Phys. A: Math. Gen., 25 (1992), L45–L50 | DOI | MR | Zbl
[43] Neeb K.-H., “Abelian extensions of infinite-dimensional Lie groups”, Travaux Math., 15 (2004), 69–194 ; math.GR/0402303 | MR
[44] Ovsienko V. Y., Khesin B. A., “Korteweg–de Vries superequations as an Euler equation”, Funct. Anal. Appl., 21 (1987), 329–331 | DOI | MR | Zbl
[45] Ovsienko V., Roger C., “Generalizations of Virasoro group and Virasoro algebra through extensions by modules of tensor densities on $S^1$”, Indag. Math. (N.S.), 9 (1998), 277–288 | DOI | MR | Zbl
[46] Pekarsky S., Shkoller S., On the stability of periodic 2D Euler-$\alpha$ flows, math.AP/0007050
[47] Poincaré H., “Sur une nouvelle forme des équations de la méchanique”, C. R. Acad. Sci., 132 (1901), 369–371 | Zbl
[48] Preston S. C., “For ideal fluids, Eulerian and Lagrangian instabilities are equivalent”, Geom. Funct. Anal., 14 (2004), 1044–1062 | DOI | MR | Zbl
[49] Roger C., “Extensions centrales d'algèbres et de groupes de Lie de dimension infinie, algèbre de Virasoro et généralisations”, Rep. Math. Phys., 35 (1995), 225–266 | DOI | MR | Zbl
[50] Shkoller S., “Geometry and curvature of diffeomorphism groups with $H^1$ metric and mean hydrodynamics”, J. Funct. Anal., 160 (1998), 337–365 ; math.AP/9807078 | DOI | MR | Zbl
[51] Shkoller S., “Analysis on groups of diffeomorphisms of manifolds with boundary and the averaged motion of a fluid”, J. Differential Geom., 55 (2000), 145–191 | MR | Zbl
[52] Shnirel'man A. I., “The geometry of the group of diffeomorphisms and the dynamics of an incompressible fluid”, Math. Sb., 56 (1987), 79–105 | DOI
[53] Shnirel'man A. I., “Generalized fluid flows, their approximation and applications”, Geom. Funct. Anal., 4 (1994), 586–620 | DOI | MR | Zbl
[54] Vishik S. M., Dolzhanskii F. V., “Analogs of the Euler–Lagrange equations and magnetohydrodynamics equations related to Lie groups”, Sov. Math. Doklady, 19 (1978), 149–153 | MR | Zbl
[55] Vizman C., “Curvature and geodesics on diffeomorphism groups”, Proceedings of the Fourth International Workshop on Differential Geometry, Braşov, Romania, 1999, 298–305
[56] Vizman C., “Geodesics and curvature of semidirect product groups”, Rend. Circ. Mat. Palermo (2) Suppl., 66 (2001), 199–206 ; math.DG/0103141 | MR | Zbl
[57] Vizman C., “Geodesics on extensions of Lie groups and stability: the superconductivity equation”, Phys. Lett. A, 284 (2001), 23–30 ; math.DG/0103140 | DOI | MR | Zbl
[58] Vizman C., “Central extensions of semidirect products and geodesic equations”, Phys. Lett. A, 330 (2004), 460–469 | DOI | MR | Zbl
[59] Vizman C., “Central extensions of the Lie algebra of symplectic vector fields”, J. Lie Theory, 16 (2005), 297–309 | MR
[60] Vizman C., “Cocycles and stream functions in quasigeostrophic motion”, J. Nonlinear Math. Phys., 15:2, 140–146 | DOI | MR | Zbl
[61] Zeitlin V., “Vorticity and waves: geometry of phase-space and the problem of normal variables”, Phys. Lett. A, 164 (1992), 177–183 | DOI | MR
[62] Zeitlin V., Pasmanter R. A., “On the differential geometric approach to geophysical flows”, Phys. Lett. A, 189 (1994), 59–63 | DOI | MR | Zbl
[63] Zeitlin V., Kambe T., “Two-dimensional ideal magnetohydrodynamics and differential geometry”, J. Phys. A: Math. Gen., 26 (1993), 5025–5031 | DOI | MR | Zbl