@article{SIGMA_2008_4_a28,
author = {Vladimir S. Gerdjikov and Nikolay A. Kostov},
title = {Reductions of {Multicomponent} {mKdV} {Equations} on {Symmetric} {Spaces} of {DIII-Type}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2008},
volume = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a28/}
}
TY - JOUR AU - Vladimir S. Gerdjikov AU - Nikolay A. Kostov TI - Reductions of Multicomponent mKdV Equations on Symmetric Spaces of DIII-Type JO - Symmetry, integrability and geometry: methods and applications PY - 2008 VL - 4 UR - http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a28/ LA - en ID - SIGMA_2008_4_a28 ER -
%0 Journal Article %A Vladimir S. Gerdjikov %A Nikolay A. Kostov %T Reductions of Multicomponent mKdV Equations on Symmetric Spaces of DIII-Type %J Symmetry, integrability and geometry: methods and applications %D 2008 %V 4 %U http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a28/ %G en %F SIGMA_2008_4_a28
Vladimir S. Gerdjikov; Nikolay A. Kostov. Reductions of Multicomponent mKdV Equations on Symmetric Spaces of DIII-Type. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a28/
[1] Wadati M., “The modified Korteweg–de Vries equation”, J. Phys. Soc. Japan, 34 (1972), 1289–1296 | MR
[2] Athorne C., Fordy A., “Generalised KdV and MKDV equations associated with symmetric spaces”, J. Phys. A: Math. Gen., 20 (1987), 1377–1386 | DOI | MR | Zbl
[3] Fordy A. P., Kulish P. P., “Nonlinear Schrödinger equations and simple Lie algebras”, Comm. Math. Phys., 89 (1983), 427–443 | DOI | MR | Zbl
[4] Ablowitz M. J., Prinari B., Trubatch A. D., Discrete and continuous nonlinear Schrödinger systems, London Mathematical Society Lecture Notes Series, 302, Cambridge University Press, 2004 | MR | Zbl
[5] Mikhailov A. V., “The reduction problem and the inverse scattering problem”, Phys. D, 3 (1981), 73–117 | DOI
[6] Lombardo S., Mikhailov A. V., “Reductions of integrable equations. Dihedral group”, J. Phys. A: Math. Gen., 37 (2004), 7727–7742 ; ; Lombardo S., Mikhailov A. V., “Reduction groups and automorphic Lie algebras”, Comm. Math. Phys., 258 (2005), 179–202 ; nlin.SI/0404013math-ph/0407048 | DOI | MR | Zbl | DOI | MR | Zbl
[7] Gerdjikov V. S., Grahovski G. G., Kostov N. A., “Reductions of $N $-wave interactions related to low-rank simple Lie algebras. I. $\mathbb Z_2$-reductions”, J. Phys. A: Math. Gen., 34 (2001), 9425–9461 ; nlin.SI/0006001 | DOI | MR | Zbl
[8] Gerdjikov V. S., Grahovski G. G., Ivanov R. I., Kostov N. A., “$N$-wave interactions related to simple Lie algebras. $\mathbb Z_2$-reductions and soliton solutions”, Inverse Problems, 17 (2001), 999–1015 ; nlin.SI/0009034 | DOI | MR | Zbl
[9] Gerdjikov V. S., Grahovski G. G., Kostov N. A., “On the multi-component NLS-type models and their gauge equivalent”, Proceedings of the International Conference “Contemporary Aspects of Astronomy, Theoretical and Gravitational Physics” (May 20–22, 2004, Sofia), Heron Press, Sofia, 2005, 306–317
[10] Gerdjikov V. S., Grahovski G. G., Kostov N. A., “On the multi-component NLS-type equations on symmetric spaces: reductions and soliton solutions”, Proceedings of the Sixth International Conference “Geometry, Integrability and Quantization” (July 3–10, 2004, Varna, Bulgaria), Softex, Sofia, 2005, 203–217 | MR | Zbl
[11] Drinfel'd V., Sokolov V. V., “Lie algebras and equations of Korteweg–de Vries type”, Sov. J. Math., 30 (1985), 1975–2036 | DOI
[12] Helgasson S., Differential geometry, Lie groups and symmetric spaces, Academic Press, 1978 | MR
[13] Zakharov V. E., Shabat A. B., “A scheme for integrating nonlinear equations of mathematical physics by the method of the inverse scattering transform. I”, Funct. Anal. Appl., 8 (1974), 226–235 ; Zakharov V. E., Shabat A. B., “A scheme for integrating nonlinear equations of mathematical physics by the method of the inverse scattering transform. II”, Funct. Anal. Appl., 13:3 (1979), 166–174 | DOI | Zbl | Zbl
[14] Shabat A. B., “Inverse-scattering problem for a system of differential equations”, Funct. Anal. Appl., 9:3 (1975), 244–247 | DOI | MR | Zbl
[15] Shabat A. B., “An inverse scattering problem”, Differ. Equations, 15 (1979), 1299–1307 | MR
[16] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. I., Theory of solitons: the inverse scattering method, Plenum, New York, 1984 | MR | Zbl
[17] Calogero F., Degasperis A., “Nonlinear evolution equations solvable by the inverse spectral transform. I”, Il Nuovo Cimento B, 32 (1976), 201–242 | DOI | MR
[18] Calogero F., Degasperis A., Spectral transform and solitons, Vol. I, North Holland, Amsterdam, 1982 | MR | Zbl
[19] Faddeev L. D., Takhtadjan L. A., Hamiltonian methods in the theory of solitons, Springer Verlag, Berlin, 1987 | MR | Zbl
[20] Calogero F., Degasperis A., “Coupled nonlinear evolution equations solvable via the inverse spectral transform, and solitons that come back: the boomeron”, Lett. Nuovo Cimento (2), 16 (1976), 425–433 | DOI | MR
[21] Degasperis A., “Solitons, boomerons, trappons”, Nonlinear Evolution Equations Solvable by the Spectral Transform, ed. F. Calogero, Pitman, London, 1978, 97–126 | MR
[22] Beals R., Sattinger D. H., “On the complete integrability of completely integrable systems”, Comm. Math. Phys., 138 (1991), 409–436 | DOI | MR | Zbl
[23] Gerdjikov V. S., “On the spectral theory of the integro-differential operator $\Lambda$, generating nonlinear evolution equations”, Lett. Math. Phys., 6 (1982), 315–324 | DOI | MR
[24] Gakhov F. D., Boundary value problems, Pergamon Press, Oxford, 1966, translated from Russian, editor I. N. Sneddon | MR | Zbl
[25] Sov. Phys. J. Exp. Theor. Phys., 38 (1974), 248–253
[26] Gerdjikov V. S., “Algebraic and analytic aspects of soliton type equations”, The legacy of the inverse scattering transform in applied mathematics, Contemp. Math., 301, 2002, 35–68 ; nlin.SI/0206014 | MR | Zbl
[27] Ablowitz M., Kaup D., Newell A., Segur H., “The inverse scattering transform – Fourier analysis for nonlinear problems”, Studies in Appl. Math., 53 (1974), 249–315 | MR | Zbl
[28] Kaup D. J., Newell A. C., “Soliton equations, singular dispersion relations and moving eigenvalues”, Adv. Math., 31 (1979), 67–100 | DOI | MR | Zbl
[29] Gerdjikov V. S., “Generalized Fourier transforms for the soliton equations. Gauge covariant formulation”, Inverse Problems, 2 (1986), 51–74 ; Gerdjikov V. S., Generating operators for the nonlinear evolution equations of soliton type related to the semisimple Lie algebras, Doctor of Sciences Thesis, JINR, Dubna, USSR, 1987 (in Russian) | DOI | MR | Zbl
[30] Gerdjikov V. S., “The Zakharov–Shabat dressing method amd the representation theory of the semisimple Lie algebras”, Phys. Lett. A, 126 (1987), 184–188 | DOI | MR