Reductions of Multicomponent mKdV Equations on Symmetric Spaces of DIII-Type
Symmetry, integrability and geometry: methods and applications, Tome 4 (2008) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

New reductions for the multicomponent modified Korteweg–de Vries (MMKdV) equations on the symmetric spaces of DIII-type are derived using the approach based on the reduction group introduced by A. V. Mikhailov. The relevant inverse scattering problem is studied and reduced to a Riemann–Hilbert problem. The minimal sets of scattering data $\mathcal T_i$, $i=1,2$ which allow one to reconstruct uniquely both the scattering matrix and the potential of the Lax operator are defined. The effect of the new reductions on the hierarchy of Hamiltonian structures of MMKdV and on $\mathcal T_i$ are studied. We illustrate our results by the MMKdV equations related to the algebra $\mathfrak g\simeq so(8)$ and derive several new MMKdV-type equations using group of reductions isomorphic to $\mathbb Z_2$, $\mathbb Z_3$, $\mathbb Z_4$.
Keywords: multicomponent modified Korteweg–de Vries (MMKdV) equations; reduction group; Riemann–Hilbert problem; Hamiltonian structures.
@article{SIGMA_2008_4_a28,
     author = {Vladimir S. Gerdjikov and Nikolay A. Kostov},
     title = {Reductions of {Multicomponent} {mKdV} {Equations} on {Symmetric} {Spaces} of {DIII-Type}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2008},
     volume = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a28/}
}
TY  - JOUR
AU  - Vladimir S. Gerdjikov
AU  - Nikolay A. Kostov
TI  - Reductions of Multicomponent mKdV Equations on Symmetric Spaces of DIII-Type
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2008
VL  - 4
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a28/
LA  - en
ID  - SIGMA_2008_4_a28
ER  - 
%0 Journal Article
%A Vladimir S. Gerdjikov
%A Nikolay A. Kostov
%T Reductions of Multicomponent mKdV Equations on Symmetric Spaces of DIII-Type
%J Symmetry, integrability and geometry: methods and applications
%D 2008
%V 4
%U http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a28/
%G en
%F SIGMA_2008_4_a28
Vladimir S. Gerdjikov; Nikolay A. Kostov. Reductions of Multicomponent mKdV Equations on Symmetric Spaces of DIII-Type. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a28/

[1] Wadati M., “The modified Korteweg–de Vries equation”, J. Phys. Soc. Japan, 34 (1972), 1289–1296 | MR

[2] Athorne C., Fordy A., “Generalised KdV and MKDV equations associated with symmetric spaces”, J. Phys. A: Math. Gen., 20 (1987), 1377–1386 | DOI | MR | Zbl

[3] Fordy A. P., Kulish P. P., “Nonlinear Schrödinger equations and simple Lie algebras”, Comm. Math. Phys., 89 (1983), 427–443 | DOI | MR | Zbl

[4] Ablowitz M. J., Prinari B., Trubatch A. D., Discrete and continuous nonlinear Schrödinger systems, London Mathematical Society Lecture Notes Series, 302, Cambridge University Press, 2004 | MR | Zbl

[5] Mikhailov A. V., “The reduction problem and the inverse scattering problem”, Phys. D, 3 (1981), 73–117 | DOI

[6] Lombardo S., Mikhailov A. V., “Reductions of integrable equations. Dihedral group”, J. Phys. A: Math. Gen., 37 (2004), 7727–7742 ; ; Lombardo S., Mikhailov A. V., “Reduction groups and automorphic Lie algebras”, Comm. Math. Phys., 258 (2005), 179–202 ; nlin.SI/0404013math-ph/0407048 | DOI | MR | Zbl | DOI | MR | Zbl

[7] Gerdjikov V. S., Grahovski G. G., Kostov N. A., “Reductions of $N $-wave interactions related to low-rank simple Lie algebras. I. $\mathbb Z_2$-reductions”, J. Phys. A: Math. Gen., 34 (2001), 9425–9461 ; nlin.SI/0006001 | DOI | MR | Zbl

[8] Gerdjikov V. S., Grahovski G. G., Ivanov R. I., Kostov N. A., “$N$-wave interactions related to simple Lie algebras. $\mathbb Z_2$-reductions and soliton solutions”, Inverse Problems, 17 (2001), 999–1015 ; nlin.SI/0009034 | DOI | MR | Zbl

[9] Gerdjikov V. S., Grahovski G. G., Kostov N. A., “On the multi-component NLS-type models and their gauge equivalent”, Proceedings of the International Conference “Contemporary Aspects of Astronomy, Theoretical and Gravitational Physics” (May 20–22, 2004, Sofia), Heron Press, Sofia, 2005, 306–317

[10] Gerdjikov V. S., Grahovski G. G., Kostov N. A., “On the multi-component NLS-type equations on symmetric spaces: reductions and soliton solutions”, Proceedings of the Sixth International Conference “Geometry, Integrability and Quantization” (July 3–10, 2004, Varna, Bulgaria), Softex, Sofia, 2005, 203–217 | MR | Zbl

[11] Drinfel'd V., Sokolov V. V., “Lie algebras and equations of Korteweg–de Vries type”, Sov. J. Math., 30 (1985), 1975–2036 | DOI

[12] Helgasson S., Differential geometry, Lie groups and symmetric spaces, Academic Press, 1978 | MR

[13] Zakharov V. E., Shabat A. B., “A scheme for integrating nonlinear equations of mathematical physics by the method of the inverse scattering transform. I”, Funct. Anal. Appl., 8 (1974), 226–235 ; Zakharov V. E., Shabat A. B., “A scheme for integrating nonlinear equations of mathematical physics by the method of the inverse scattering transform. II”, Funct. Anal. Appl., 13:3 (1979), 166–174 | DOI | Zbl | Zbl

[14] Shabat A. B., “Inverse-scattering problem for a system of differential equations”, Funct. Anal. Appl., 9:3 (1975), 244–247 | DOI | MR | Zbl

[15] Shabat A. B., “An inverse scattering problem”, Differ. Equations, 15 (1979), 1299–1307 | MR

[16] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. I., Theory of solitons: the inverse scattering method, Plenum, New York, 1984 | MR | Zbl

[17] Calogero F., Degasperis A., “Nonlinear evolution equations solvable by the inverse spectral transform. I”, Il Nuovo Cimento B, 32 (1976), 201–242 | DOI | MR

[18] Calogero F., Degasperis A., Spectral transform and solitons, Vol. I, North Holland, Amsterdam, 1982 | MR | Zbl

[19] Faddeev L. D., Takhtadjan L. A., Hamiltonian methods in the theory of solitons, Springer Verlag, Berlin, 1987 | MR | Zbl

[20] Calogero F., Degasperis A., “Coupled nonlinear evolution equations solvable via the inverse spectral transform, and solitons that come back: the boomeron”, Lett. Nuovo Cimento (2), 16 (1976), 425–433 | DOI | MR

[21] Degasperis A., “Solitons, boomerons, trappons”, Nonlinear Evolution Equations Solvable by the Spectral Transform, ed. F. Calogero, Pitman, London, 1978, 97–126 | MR

[22] Beals R., Sattinger D. H., “On the complete integrability of completely integrable systems”, Comm. Math. Phys., 138 (1991), 409–436 | DOI | MR | Zbl

[23] Gerdjikov V. S., “On the spectral theory of the integro-differential operator $\Lambda$, generating nonlinear evolution equations”, Lett. Math. Phys., 6 (1982), 315–324 | DOI | MR

[24] Gakhov F. D., Boundary value problems, Pergamon Press, Oxford, 1966, translated from Russian, editor I. N. Sneddon | MR | Zbl

[25] Sov. Phys. J. Exp. Theor. Phys., 38 (1974), 248–253

[26] Gerdjikov V. S., “Algebraic and analytic aspects of soliton type equations”, The legacy of the inverse scattering transform in applied mathematics, Contemp. Math., 301, 2002, 35–68 ; nlin.SI/0206014 | MR | Zbl

[27] Ablowitz M., Kaup D., Newell A., Segur H., “The inverse scattering transform – Fourier analysis for nonlinear problems”, Studies in Appl. Math., 53 (1974), 249–315 | MR | Zbl

[28] Kaup D. J., Newell A. C., “Soliton equations, singular dispersion relations and moving eigenvalues”, Adv. Math., 31 (1979), 67–100 | DOI | MR | Zbl

[29] Gerdjikov V. S., “Generalized Fourier transforms for the soliton equations. Gauge covariant formulation”, Inverse Problems, 2 (1986), 51–74 ; Gerdjikov V. S., Generating operators for the nonlinear evolution equations of soliton type related to the semisimple Lie algebras, Doctor of Sciences Thesis, JINR, Dubna, USSR, 1987 (in Russian) | DOI | MR | Zbl

[30] Gerdjikov V. S., “The Zakharov–Shabat dressing method amd the representation theory of the semisimple Lie algebras”, Phys. Lett. A, 126 (1987), 184–188 | DOI | MR