@article{SIGMA_2008_4_a27,
author = {Denis Kochan},
title = {Noncommutative {Lagrange} {Mechanics}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2008},
volume = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a27/}
}
Denis Kochan. Noncommutative Lagrange Mechanics. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a27/
[1] Seiberg N., Witten E., “String theory and noncommutative geometry”, J. High Energy Phys., 1999:9 (1999), 032, 93 pp., ages ; hep-th/9908142 | DOI | MR | Zbl
[2] Doplicher S., Fredenhagen K., Roberts J. E., “The quantum structure of spacetime at the Planck scale and quantum fields”, Comm. Math. Phys., 172 (1995), 187–220 ; hep-th/0303037 | DOI | MR | Zbl
[3] Connes A., Noncommutative geometry, Academic Press, 1994 ; Madore J., An introduction to noncommutative differential geometry and its physical applications,, Cambridge University Press, Cambridge, 1999 ; Gracia-Bondia J. M., Várilly J. C., Figueroa H., Elements of noncommutative geometry, Birkhäuser, Boston, 2001 | MR | Zbl | MR | Zbl | MR | Zbl
[4] Douglas M. R., Nekrasov N. A., “Noncommutative field theory”, Rev. Modern Phys., 73 (2001), 977–1029 ; ; Szabo R. J., “Quantum field theory on noncommutative spaces”, Phys. Rep., 378 (2003), 207–299 ; hep-th/0106048hep-th/0109162 | DOI | MR | DOI | MR | Zbl
[5] Nair V. P., Polychronakos A. P., “Quantum mechanics on the noncommutative plane and sphere”, Phys. Lett. B, 505 (2001), 267–274 ; ; Gamboa J., Loewe M., Rojas J. C., “Noncommutative quantum mechanics”, Phys. Rev. D, 64 (2001), 067901, 3 pp., ages ; ; Demetrian M., Kochan D., “Quantum mechanics on non-commutative plane”, Acta Phys. Slov., 52 (2002), 1–9; ; Djemai A. E. F., Smail H., “On quantum mechanics on noncommutative quantum phase space”, Commun. Theor. Phys. (Beijing), 41 (2004), 837–844 ; hep-th/0011172hep-th/0010220hep-th/0102050hep-th/0309006 | DOI | MR | Zbl | DOI | MR | MR | Zbl
[6] Duval C., Horváthy P. A., “The exotic Galilei group and the “Peierls substitution””, Phys. Lett. B, 479 (2000), 284–290 ; ; Horváthy P. A., Plyushchay M. S., “Nonrelativistic anyons, noncommutative plane and exotic Galilean symmetry”, J. High Energy Phys., 2002:6 (2002), 033, 11 pp., ages ; ; Banerjee R., “A novel approach to noncommutativity in planar quantum mechanics”, Modern Phys. Lett. A, 17 (2002), 631–645 ; ; Horváthy P. A., Plyushchay M. S., “Anyon wave equations and the noncommutative plane”, Phys. Lett. B, 595 (2004), 547–555 ; hep-th/0002233hep-th/0201228hep-th/0106280hep-th/0404137 | DOI | MR | Zbl | DOI | MR | DOI | MR | Zbl | DOI | MR
[7] Romero J. M., Santiago J. A., Vergara J. D., “Newton's second law in a non-commutative space”, Phys. Lett. A, 310 (2003), 9–12 ; ; Djemai A. E. F., “On noncommutative classical mechanics”, Internat. J. Theoret. Phys., 42 (2004), 299–314 ; hep-th/0211165hep-th/0309034 | DOI | MR | Zbl | DOI | MR
[8] Arnol'd V. I., Mathematical methods of classical mechanics, 2nd ed., Springer-Verlag, New York, 1989 ; Abraham R., Marsden J. E., Foundation of mechanics, Addison-Wesley, 1978; Burke W. L., Applied differential geometry, Cambridge University Press, 1985 ; Fecko M., Differential geometry and Lie groups for physicists, Cambridge University Press, 2006 | MR | MR | Zbl | MR | Zbl
[9] Kobayashi S., Nomizu K., Foundation of differential geometry, Vol. I, Wiley, New York, 1963 ; do Carmo M. P., Riemannian geometry, Birkhäuser, Boston, 1992 ; Frankel T., The geometry of physics, Cambridge University Press, Cambridge, 1997 | MR | Zbl | MR | Zbl | MR | Zbl
[10] Bayen F., Flato M., Frønsdal C., Lichnerowicz A., Sternheimer D., “Deformation theory and quantization”, Ann. Phys., 111 (1978), 61–151 ; Fedosov B. V., “A Simple Geometrical construction of deformation quantization”, J. Differential Geom., 40 (1994), 213–238 ; Kontsevich M., “Deformation quantization of Poisson manifolds”, Lett. Math. Phys., 66 (2003), 157–216 ; q-alg/9709040 | DOI | MR | MR | Zbl | DOI | MR | Zbl
[11] Frölicher A., Nijenhuis A., “Theory of vector-valued differential forms. I. Derivations of the graded ring of differential forms”, Nederl. Akad. Wetensch. Proc. Ser. A, 59 (1956), 338–359 | MR | Zbl
[12] Shabanov S. V., “Constrained systems and analytical mechanics in spases with torsion”, J. Phys. A: Math. Gen., 31 (1998), 5177–5190 ; physics/9801023 | DOI | MR | Zbl
[13] Hehl F. W., von der Heyde P., Kerlick G. D., Nester J. M., “General relativity with spin and torsion: foundations and prospects”, Rev. Modern Phys., 48 (1976), 393–416 ; Hehl F. W., McCrea J. D., Mielke E. W., Ne'eman Y., “Metric-affine gauge theory of gravity: field equations, Noether identities, world spinors, and breaking of dilation invariance”, Phys. Rep., 258 (1995), 1–171 | DOI | MR | DOI | MR