Free Field Construction of D-Branes in Rational Models of CFT and Gepner Models
Symmetry, integrability and geometry: methods and applications, Tome 4 (2008) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This is a review article of my recent papers on free field construction of D-branes in $N=2$ superconformal minimal models and Gepner models.
Keywords: strings; D-branes; conformal field theory; free field construction; minimal models Gepner models.
@article{SIGMA_2008_4_a24,
     author = {Sergei E. Parkhomenko},
     title = {Free {Field} {Construction} of {D-Branes} in {Rational} {Models} of {CFT} and {Gepner} {Models}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2008},
     volume = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a24/}
}
TY  - JOUR
AU  - Sergei E. Parkhomenko
TI  - Free Field Construction of D-Branes in Rational Models of CFT and Gepner Models
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2008
VL  - 4
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a24/
LA  - en
ID  - SIGMA_2008_4_a24
ER  - 
%0 Journal Article
%A Sergei E. Parkhomenko
%T Free Field Construction of D-Branes in Rational Models of CFT and Gepner Models
%J Symmetry, integrability and geometry: methods and applications
%D 2008
%V 4
%U http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a24/
%G en
%F SIGMA_2008_4_a24
Sergei E. Parkhomenko. Free Field Construction of D-Branes in Rational Models of CFT and Gepner Models. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a24/

[1] Polchinski J., “Dirichlet branes and Ramond-Ramond charges”, Phys. Rev. Lett., 75 (1995), 4724–4727 ; ; Polchinski J., TASI lectures on D-branes, arXiv: /hep-th/9510017arXiv:hep-th/9611050 | DOI | MR | Zbl | MR

[2] Gepner D., “Space-time supersymmetry in compactified string theory and superconformal models”, Nuclear Phys. B, 296 (1988), 757–778 | DOI | MR

[3] Feigin B. L., Fuchs D. B., “Invariant skew-symmetric differential operators on line and Verma modules over the Virasoro algebra”, Funct. Anal. Appl., 16 (1982), 114–126 ; Feigin B. L., Fuchs D. B., Representations of Virasoro algebra, in Seminar on Supermanifolds 5, ed. D. Leites, Reports of Dept. Math. Stockholm Univ., 1986 | DOI

[4] Malikov F. G., Feigin B. L., Fuchs D. B., “Singular vectors in Verma modules over Kac-Moody algebras”, Funktsional. Anal. i Prilozhen., 20:2 (1986), 25–37, 96 (in Russian) | DOI | MR | Zbl

[5] Feigin B. L., Frenkel E., Representations of affine Kac-Moody algebras and bosonization, Physics and Mathematics of Strings, 271, World Sci. Publishing, Teaneck, 1990 | MR

[6] Felder G., “BRS Approach to minimal models”, Nuclear Phys. B, 317 (1989), 215–236 ; Bernard D., Felder G., “Fock representations and BRSt cohomology in $SL(2)$ current algebra”, Comm. Math. Phys., 127 (1990), 145–168 | DOI | MR | DOI | MR | Zbl

[7] Dotsenko V. S., Fateev V. A., “Conformal algebra and multipoint correlation functions in 2D statistical models”, Nuclear Phys. B, 240 (1984), 312–348 ; Dotsenko V. S., Fateev V. A., “Four point correlation functions and operator algebra in 2D conformal invariant field theory with central charge $c1$”, Nuclear Phys. B, 251 (1985), 691–734 | DOI | MR | DOI | MR

[8] Dotsenko V. S., “Solving the $SU(2$) conformal field theory using the Wakimoto free field representation”, Nuclear Phys. B, 358 (1991), 547–570 | DOI | MR

[9] Parkhomenko S. E., “BRST construction of D-branes in $SU(2)$ WZW model”, Nuclear Phys. B, 617 (2001), 198–214 ; arXiv:hep-th/0103142 | DOI | MR | Zbl

[10] Parkhomenko S. E., “Free field construction of D-branes in $N=2$ minimal models”, Nuclear Phys. B, 671 (2003), 325–342 ; arXiv:hep-th/0301070 | DOI | MR | Zbl

[11] Parkhomenko S. E., “Free field approach to D-branes in Gepner models”, Nuclear Phys. B, 731 (2005), 360–388 ; arXiv:hep-th/0412296 | DOI | MR | Zbl

[12] Parkhomenko S. E., “Free field representation of permutation D-branes in Gepner models”, J. Exp. Theor. Phys., 102 (2006), 902–919 ; arXiv:hep-th/0512322 | DOI | MR

[13] Ishikawa H., Watamura S., “Free field realization of D-brane in group manifold”, J. High Energy Phys., 2000:8 (2000), 044, 23 pp., ages ; arXiv:hep-th/0007141 | DOI | MR | Zbl

[14] Feigin B. L., Semikhatov A. M., Sirota V. A., Tipunin I. Yu., “Resolutions and characters of irredicible representations of the $N=2$ superconformal algebra”, Nuclear Phys. B, 536 (1998), 617–656 ; arXiv:hep-th/9805179 | DOI | MR

[15] Schwimmer A., Seiberg N., “Comments on the $N=2,3,4$ superconformal algebras in two dimensions”, Phys. Lett. B, 184 (1987), 191–196 | DOI | MR

[16] Feigin B. L., Semikhatov A. M., Free field resolutions of the unitary $N=2$ super-Virasoro representations, arXiv:hep-th/9810059

[17] Cardy J. L., “Boundary conditions, fusion rules and the Verlinde formula”, Nuclear Phys. B, 324 (1989), 581–596 | DOI | MR

[18] Sen A., “Tachyon condensation on the brane antibrane system”, J. High Energy Phys., 1998:8 (1998), 012, 6 pp., ages ; arXiv:hep-th/9805170 | DOI | MR | Zbl

[19] Gelfand S., Manin Yu., Methods of homological algebra, Springer-Verlag, Berlin, 1996 | MR

[20] Okuda T., Takayanagi T., “Ghost D-branes”, J. High Energy Phys., 2006:3 (2006), 062, 39 pp., ages ; arXiv:hep-th/0601024 | DOI | MR

[21] Recknagel A., Schomerus V., “D-branes in Gepner models”, Nuclear Phys. B, 531 (1998), 185–225 ; arXiv:hep-th/9712186 | DOI | MR | Zbl

[22] Eguchi T., Ooguri H., Taormina A., Yang S.-K., “Superconformal algebras and string compactification on manifolds with $SU(n)$ holonomy”, Nuclear Phys. B, 315 (1989), 193–221 | DOI | MR

[23] Fuchs J., Schweigert C., Walcher J., “Projections in string theory and boundary states for Gepner models”, Nuclear Phys. B, 588 (2000), 110–148 ; arXiv:hep-th/0003298 | DOI | MR | Zbl

[24] Recknagel A., “Permutation branes”, J. High Energy Phys., 2003:4 (2003), 041, 27 pp., ages ; arXiv:hep-th/0208119 | DOI | MR

[25] Malikov F., Schechtman V., Vaintrob A., “Chiral de Rham complex”, Comm. Math. Phys., 204 (1999), 439–473 ; arXiv:math.AG/9803041 | DOI | MR | Zbl

[26] Frenkel E., Schestney M., Chiral de Rham complex on orbifolds, arXiv:math.AG/0307181

[27] Diaconescu D., Gomis J., “Fractional branes and boundary states in orbifold theories”, J. High Energy Phys., 2000:10 (2000), 001, 48 pp., ages ; arXiv:hep-th/9906242 | DOI | MR | Zbl