@article{SIGMA_2008_4_a22,
author = {Kazuki Hasebe},
title = {SUSY {Quantum} {Hall} {Effect} on {Non-Anti-Commutative} {Geometry}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2008},
volume = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a22/}
}
Kazuki Hasebe. SUSY Quantum Hall Effect on Non-Anti-Commutative Geometry. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a22/
[1] Ezawa Z. F., Tsitsishvili G., Hasebe K., “Noncommutative geometry, extended $W_\infty$ algebra and Grassmannian solitons in multicomponent quantum Hall systems”, Phys. Rev. B, 67 (2003), 125314, 16 pp., ages ; hep-th/0209198 | DOI
[2] Zhang S. C., Hu J. P., “A four dimensional generalization of the quantum Hall effect”, Science, 294 (2001), 823–828 ; cond-mat/0110572 | DOI
[3] Karabali D., Nair V. P., “Quantum Hall effect in higher dimensions”, Nuclear Phys. B, 641 (2002), 533–546 ; hep-th/0203264 | DOI | MR | Zbl
[4] Bernevig B. A., Hu J. P., Toumbas N., Zhang S. C., “The eight dimensional quantum Hall effect and the octonions”, Phys. Rev. Lett., 91 (2003), 236803, 4 pp., ages ; cond-mat/0306045 | DOI
[5] Hasebe K., Kimura Y., “Dimensional hierarchy in quantum Hall effects on fuzzy spheres”, Phys. Lett. B, 602 (2004), 255–260 ; hep-th/0310274 | DOI | MR
[6] Nair V. P., Randjbar-Daemi S., “Quantum Hall effect on $S^3$, edge states and fuzzy $S^3\mathbf Z_2$”, Nuclear Phys. B, 679 (2004), 447–463 ; hep-th/0309212 | DOI | MR | Zbl
[7] Jellal A., “Quantum Hall effect on higher dimensional spaces”, Nuclear Phys. B, 725 (2005), 554–576 ; hep-th/0505095 | DOI | MR | Zbl
[8] Daoud M., Jellal A., Quantum Hall effect on the flag manifold F$_2$, hep-th/0610157 | MR
[9] Landi G., “Spin-Hall effect with quantum group symmetry”, Lett. Math. Phys., 75 (2006), 187–200 ; hep-th/0504092 | DOI | MR | Zbl
[10] Karabali D., Nair V. P., “Quantum Hall effect in higher dimensions, matrix models and fuzzy geometry”, J. Phys. A: Math. Gen., 39 (2006), 12735–12763 ; hep-th/0606161 | DOI | MR | Zbl
[11] Murakami Sh., Nagaosa N., Zhang S. C., “Dissipationless quantum spin current at room temperature”, Science, 301 (2003), 1348–1351 ; cond-mat/0308167 | DOI
[12] de Boer J., Grassi P. A., van Nieuwenhuizen P., “Non-commutative superspace from string theory”, Phys. Lett. B, 574 (2003), 98–104 ; hep-th/0302078 | DOI | MR | Zbl
[13] Ooguri H., Vafa C., “The $C$-deformation of gluino and non-planar diagrams”, Adv. Theor. Math. Phys., 7 (2003), 53–85 ; hep-th/0302109 | MR
[14] Seiberg N., “Noncommutative superspace, $N=1/2$ supersymmetry, field theory and string theory”, J. High Energy Phys., 2003:6 (2003), 010, 17 pp., ages ; hep-th/0305248 | DOI | MR
[15] Azuma T., Iso S., Kawai H., Ohwashi Y., “Supermatrix models”, Nuclear Phys. B, 610 (2001), 251–279 ; hep-th/0102168 | DOI | MR | Zbl
[16] Iso S., Umetsu H., “Gauge theory on noncommutative supersphere from supermatrix model”, Phys. Rev. D, 69 (2004), 105003, 7 pp., ages ; ; Iso S., Umetsu H., “Note on gauge theory on fuzzy supersphere”, Phys. Rev. D, 69 (2004), 105014, 7 pp., ages ; hep-th/0311005hep-th/0312307 | DOI | MR | DOI | MR
[17] Balachandran A. P., Kurkcuoglu S., Rojas E., “The star product on the fuzzy supersphere”, J. High Energy Phys., 2002:7 (2002), 056, 22 pp., ages ; hep-th/0204170 | DOI | MR
[18] Balachandran A. P., Pinzul A., Qureshi B., “SUSY anomalies break $N=2$ to $N=1$: the supersphere and the fuzzy supersphere”, J. High Energy Phys., 2005:12 (2005), 002, 14 pp., ages ; hep-th/0506037 | DOI | MR
[19] Kurkcuoglu S., “Non-linear sigma model on the fuzzy supersphere”, J. High Energy Phys., 2004:3 (2004), 062, 12 pp., ages ; hep-th/0311031 | DOI | MR
[20] Schunck A. F., Wainwright Ch., “A geometric approach to scalar field theories on the supersphere”, J. Math. Phys., 46 (2005), 033511, 34 pp., ages ; hep-th/0409257 | DOI | MR | Zbl
[21] Panero M., “Quantum field theory in a non-commutative space: theoretical predictions and numerical results on the fuzzy sphere”, SIGMA, 2 (2006), 081, 14 pp., ages ; hep-th/0609205 | MR | Zbl
[22] Ivanov E., Mezincescu L., Townsend P. K., Fuzzy $CP(n|m)$ as a quantum superspace, hep-th/0311159
[23] Ivanov E., Mezincescu L., Townsend P. K., A super-flag Landau model, hep-th/0404108 | MR
[24] Ivanov E., Mezincescu L., Townsend P. K., “Planar super-Landau models”, J. High Energy Phys., 2006:1 (2006), 143, 23 pp., ages ; hep-th/0510019 | DOI | MR
[25] Curtright T., Ivanov E., Mezincescu L., Townsend P. K., “Planar super-Landau models revisited”, J. High Energy Phys., 2007:4 (2007), 020, 25 pp., ages ; hep-th/0612300 | DOI | MR
[26] Bellucci S., Beylin A., Krivonos S., Nersessian A., Orazi E., “$N=4$ supersymmetric mechanics with nonlinear chiral supermultiplet”, Phys. Lett. B, 616 (2005), 228–232 ; hep-th/0503244 | DOI | MR
[27] Gates S. J. Jr., Jellal A., Saidi E. H., Schreiber M., “Supersymmetric embedding of the quantum Hall matrix model”, J. High Energy Phys., 2004:11 (2004), 075, 29 pp., ages ; hep-th/0410070 | DOI | MR
[28] Yu M., Zhang X., Supersymmetric Hamiltonian approach to edge excitations in $\nu=5/2$ fractional quantum Hall effect, arXiv:0706.1338
[29] Haldane F. D. M., “Fractional quantization of the Hall effect: a hierarchy of incompressible quantum fluid states”, Phys. Rev. Lett., 51 (1983), 605–608 | DOI | MR
[30] Frappat L., Sciarrino A., Sorba P., Dictionary on Lie algebras and superalgebras, Academic Press, San Diego, 2000, and references therein | MR
[31] Nakahara M., Geometry, topology and physics, IOP Publishing, Bristol, 2003 | MR | Zbl
[32] Bartocci C., Bruzzo U., Landi G., “Chern–Simons forms on principal superfiber bundles”, J. Math. Phys., 31 (1987), 45–54 | DOI | MR
[33] Landi G., “Projective modules of finite type over the supersphere $S^{2,2}$”, Differential Geom. Appl., 14 (2001), 95–111 ; math-ph/9907020 | DOI | MR | Zbl
[34] Hasebe K., Kimura Y., “Fuzzy supersphere and supermonopole”, Nuclear Phys. B, 709 (2005), 94–114 ; hep-th/0409230 | DOI | MR | Zbl
[35] Hasebe K., “Supersymmetric quantum Hall effect on a fuzzy supersphere”, Phys. Rev. Lett., 94 (2005), 206802, 4 pp., ages ; hep-th/0411137 | DOI
[36] Grosse H., Klimcik C., Presnajder P., “Field theory on a supersymmetric lattice”, Comm. Math. Phys., 185 (1997), 155–175 ; hep-th/9507074 | DOI | MR | Zbl
[37] Grosse H., Reiter G., “The fuzzy supersphere”, J. Geom. Phys., 28 (1998), 349–383 ; math-ph/9804013 | DOI | MR | Zbl
[38] Balachandran A. P., Kurkcuoglu S., Vaidya S., Lectures on fuzzy and fuzzy SUSY physics, hep-th/0511114
[39] Hatsuda M., Iso S., Umetsu H., “Noncommutative superspace, supermatrix and lowest Landau level”, Nuclear Phys. B, 671 (2003), 217–242 ; hep-th/0306251 | DOI | MR | Zbl
[40] Hasebe K., “Quantum Hall liquid on a noncommutative superplane”, Phys. Rev. D, 72 (2005), 105017, 9 pp., ages ; hep-th/0503162 | DOI
[41] Hasebe K., “Unification of Laughlin and Moore–Read states in SUSY quantum Hall effect”, Phys. Lett. A, 372 (2008), 1516–1520 ; arXiv:0705.4527 | DOI
[42] Moore G., Read N., “Nonabelions in the fractional quantum hall effect”, Nuclear Phys. B, 360 (1991), 362–396 | DOI | MR
[43] Greiter M., Wen X-G., Wilczek F., “Paired Hall state at half filling”, Phys. Rev. Lett., 66 (1991), 3205–3208 | DOI | MR
[44] Zhang S. C., Hansson T. H., Kivelson S., “Effective-field-theory model for the fractional quantum Hall effect”, Phys. Rev. Lett., 62 (1989), 82–85 | DOI
[45] Lee D. H., Fisher M. P. A., “Anyon superconductivity and charge-vortex duality”, Internat. J. Modern Phys. B, 5 (1991), 2675–2699 | DOI | MR
[46] Hasebe K., “Supersymmetric Chern–Simons theory and supersymmetric quantum Hall liquid”, Phys. Rev. D, 74 (2006), 045026, 12 pp., ages ; hep-th/0606007 | DOI | MR
[47] Nissimov E., Pacheva S., “Phase transition and $1/N$ expansion in (2+1)-dimensional supersymmetric sigma models”, Lett. Math. Phys., 5 (1981), 67–73 ; Nissimov E., Pacheva S., “Parity-violating anomalies in supersymmetric gauge theories”, Phys. Lett. B, 155 (1985), 76–82 ; Nissimov E., Pacheva S., “Anomalous generation of Chern–Simons terms in $D=3$, $N=2$ supersymmetric gauge theories”, Lett. Math. Phys., 11 (1986), 43–49 | DOI | MR | DOI | MR | DOI | MR | Zbl
[48] Lee B. H., Lee C. K., Min H., “Supersymmetric Chern–Simons vortex systems and fermion zero modes”, Phys. Rev. D, 45 (1992), 4588–4599 | DOI | MR
[49] Ezawa K., Ishikawa A., “$Osp(1|2)$ Chern–Simons gauge theory as 2D $N=1$ induced supergravity”, Phys. Rev. D, 56 (1997), 2362–2368 ; hep-th/9612031 | DOI | MR
[50] Sparling G., Twistor theory and the four-dimensional quantum Hall effect of Zhang and Hu, cond-mat/0211679
[51] Mihai D., Sparling G., Tillman Ph., Non-commutative time, the quantum Hall effect and twistor theory, cond-mat/0401224