On Parametrization of the Linear $\mathrm{GL}(4,C)$ and Unitary $\mathrm{SU}(4)$ Groups in Terms of Dirac
Symmetry, integrability and geometry: methods and applications, Tome 4 (2008) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Parametrization of $4\times 4$-matrices $G$ of the complex linear group $GL(4,C)$ in terms of four complex 4-vector parameters $(k,m,n,l)$ is investigated. Additional restrictions separating some subgroups of $GL(4,C)$ are given explicitly. In the given parametrization, the problem of inverting any $4\times4$ matrix $G$ is solved. Expression for determinant of any matrix $G$ is found: $\det G=F(k,m,n,l)$. Unitarity conditions $G^+=G^{-1}$ have been formulated in the form of non-linear cubic algebraic equations including complex conjugation. Several simplest solutions of these unitarity equations have been found: three 2-parametric subgroups $G_1$, $G_2$, $G_3$ – each of subgroups consists of two commuting Abelian unitary groups; 4-parametric unitary subgroup consisting of a product of a 3-parametric group isomorphic $SU(2)$ and 1-parametric Abelian group. The Dirac basis of generators $\Lambda_k$, being of Gell-Mann type, substantially differs from the basis $\lambda_i$ used in the literature on $SU(4)$ group, formulas relating them are found – they permit to separate $SU(3)$ subgroup in $SU(4)$. Special way to list 15 Dirac generators of $GL(4,C)$ can be used $\{\Lambda_k\}=\{\alpha_i \oplus\beta_j\oplus(\alpha_i V\beta_j=\mathbf K\oplus\mathbf L\oplus\mathbf M)\}$, which permit to factorize $SU(4)$ transformations according to $S=e^{i\vec{a}\vec{\alpha}}e^{i\vec{b}\vec{\beta}}e^{i{\mathbf k}{\mathbf K}}e^{i{\mathbf l}{\mathbf L}}e^{i{\mathbf m}{\mathbf M}}$, where two first factors commute with each other and are isomorphic to $SU(2)$ group, the three last ones are 3-parametric groups, each of them consisting of three Abelian commuting unitary subgroups. Besides, the structure of fifteen Dirac matrices $\Lambda_k$ permits to separate twenty 3-parametric subgroups in $SU(4)$ isomorphic to $SU(2)$; those subgroups might be used as bigger elementary blocks in constructing of a general transformation $SU(4)$. It is shown how one can specify the present approach for the pseudounitary group $SU(2,2)$ and $SU(3,1)$.
Keywords: Dirac matrices; linear group; unitary group; Gell-Mann basis; parametrization.
@article{SIGMA_2008_4_a20,
     author = {Victor M. Red'kov and Andrei A. Bogush and Natalia G. Tokarevskaya},
     title = {On {Parametrization} of the {Linear} $\mathrm{GL}(4,C)$ and {Unitary} $\mathrm{SU}(4)$ {Groups} in {Terms} of {Dirac}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2008},
     volume = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a20/}
}
TY  - JOUR
AU  - Victor M. Red'kov
AU  - Andrei A. Bogush
AU  - Natalia G. Tokarevskaya
TI  - On Parametrization of the Linear $\mathrm{GL}(4,C)$ and Unitary $\mathrm{SU}(4)$ Groups in Terms of Dirac
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2008
VL  - 4
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a20/
LA  - en
ID  - SIGMA_2008_4_a20
ER  - 
%0 Journal Article
%A Victor M. Red'kov
%A Andrei A. Bogush
%A Natalia G. Tokarevskaya
%T On Parametrization of the Linear $\mathrm{GL}(4,C)$ and Unitary $\mathrm{SU}(4)$ Groups in Terms of Dirac
%J Symmetry, integrability and geometry: methods and applications
%D 2008
%V 4
%U http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a20/
%G en
%F SIGMA_2008_4_a20
Victor M. Red'kov; Andrei A. Bogush; Natalia G. Tokarevskaya. On Parametrization of the Linear $\mathrm{GL}(4,C)$ and Unitary $\mathrm{SU}(4)$ Groups in Terms of Dirac. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a20/

[1] Baker H. F., “On the exponential theorem for a simply transitive continuous group, and the calculation of the finite equations from the constants of structure”, Proc. London Math. Soc., 34 (1901), 91–129 | DOI

[2] Barenco A., “A universal two bit gate for quantum computation”, Proc. Roy. Soc. London A, 449 (1995), 679–693 | DOI | MR

[3] Barnes K. J., Delbourgo R., “Matrix and tensor constructions from a generic $SU(n)$ vector”, J. Phys. A: Math. Gen., 5 (1972), 1043–1053 | DOI | MR

[4] Barnes K. J., Dondi P. H., Sarkar S. C., “General form of the $SU(3)$ Gursey matrix”, J. Phys. A: Math. Gen., 5 (1972), 555–562 | DOI | MR

[5] Barut A. O., Bohm A., “Reduction of a class of $O(4,2)$ representations with respect to $SO(4,1)$ and $SO(3,2)$”, J. Math. Phys., 11 (1970), 2938–2945 | DOI | MR

[6] Barut A. O., Bracken A. J., “Zitterbewegung and the internal geometry of the electron”, Phys. Rev. D, 23 (1981), 2454–2463 | DOI | MR

[7] Barut A. O., Brittin W. E., De Sitter and conformal groups and their applications, Lecture Notes in Theoretical Physics, 13, 1971

[8] Barut A. O., Zeni J. R., Laufer A. J., “The exponential map for the conformal group $O(2,4)$”, J. Phys. A: Math. Gen., 27 (1994), 5239–5250 ; hep-th/9408105 | DOI | MR | Zbl

[9] Barut A. O., Zeni J. R., Laufer A., “The exponential map for the unitary group $SU(2,2)$”, J. Phys. A: Math. Gen., 27 (1994), 6799–6806 ; hep-th/9408145 | DOI | MR

[10] Bég M. A. B., Ruegg H., “A set of harmonic functions for the group $SU(3)$”, J. Math. Phys., 6 (1965), 677–682 | DOI | MR | Zbl

[11] Bincer A. M., “Parametrization of $SU(n)$ with $n-1$ orthonormal vectors”, J. Math. Phys., 31 (1990), 563–567 | DOI | MR | Zbl

[12] Bogush A. A., “On matrices of finite unitary transformations”, Vesti AN BSSR Ser. Fiz.-Mat., 1973, no. 5, 105–112 (in Russian) | MR | Zbl

[13] Bogush A. A., “On subgroups of the group $SU(n)$ isomorphic to $SU(2)$ and flat unitary transformations”, Vesti AN BSSR Ser. Fiz.-Mat., 1974, no. 1, 63–68 (in Russian) | MR | Zbl

[14] Bogush A. A., “On vector parameterization of subgroups of the group $SO(n,C)$ isomorphic to $SO(3,C)$”, Doklady AN BSSR, 17 (1973), 995–999 (in Russian) | MR

[15] Bogush A. A., Fedorov F. I., “On flat orthogonal transformations”, Doklady AN SSSR, 206 (1972), 1033–1036 (in Russian) | MR | Zbl

[16] Bogush A. A., Fedorov F. I., Fedorovykh A. M., “On finite transformations of the group $SO(n,R)$ and its representations”, Doklady AN SSSR, 214 (1974), 985–988 (in Russian) | MR | Zbl

[17] Bogush A. A., Otchik V. S., Fedorov F. I., “On finite transformations of the group $SO(5)$ and its finite-dimensional representations”, Doklady AN SSSR, 227 (1976), 265–268 (in Russian) | MR | Zbl

[18] Bogush A. A., Red'kov V. M., “On vector parametrization of the group $GL(4,C)$ and its subgroups”, Vesti National Academy of Sciences of Belarus, Ser. Fiz.-Mat., 2006, no. 3, 63–69 ; Bogush A. A., Red'kov V. M., On unique parametrization of the linear group $GL(4,C)$ and its subgroups by using the Dirac matrix algebra basis, hep-th/0607054 | MR | MR

[19] Bracken A. J., Massive neutrinos, massless neutrinos, and $so(4,2)$ invariance, hep-th/0504111

[20] Bracken A. J., “$O(4,2)$: an exact invariance algebra for the electron”, J. Phys. A: Math. Gen., 8 (1975), 808–815 | DOI | MR

[21] Bracken A. J., “A simplified $SO(6,2)$ model of $SU(3)$”, Comm. Math. Phys., 94 (1984), 371–377 | DOI | MR | Zbl

[22] Byrd M., “Differential geometry on $SU(3)$ with applications to three state systems”, J. Math. Phys., 39 (1998), 6125–6136 ; Erratum J. Math. Phys., 41 (2001), 1026–1030 ; math-ph/9807032 | DOI | MR | Zbl | DOI | MR

[23] Byrd M., Geometric phases for three state systems, quant-ph/9902061

[24] Byrd M., The geometry of $SU(3)$, physics/9708015

[25] Byrd M., Sudarshan E. C. G., “$SU(3)$ revisited”, J. Phys. A: Math. Gen., 31 (1998), 9255–9268 ; physics/9803029 | DOI | MR | Zbl

[26] Campbell J. E., “On a law of combination of operators bearing on the theory of continuous transformation groups”, Proc. London Math. Soc., 28 (1896), 381–390 ; Campbell J. E., “On a law of combination of operators (second paper)”, Proc. London Math. Soc., 29 (1897), 14–32 | DOI | DOI

[27] Chacon E., Moshinski M., “Representations of finite $U(3)$ transformations”, Phys. Lett., 23 (1966), 567–569 | DOI | Zbl

[28] Chaturvedi S., Mukunda N., “Parametrizing the mixing matrix: a unified approach”, Internat. J. Modern Phys. A, 16 (2001), 1481–1490 ; hep-ph/0004219 | DOI

[29] Dahiya H., Gupta M., “$SU(4)$ chiral quark model with configuration mixing”, Phys. Rev. D, 67 (2003), 074001, 8 pp., ages ; hep-ph/0302042 | DOI

[30] Dahm R., “Relativistic $SU(4)$ and quaternions”, Adv. Appl. Clifford Algebras, 7, suppl. (1997), 337–356 ; hep-ph/9601207 | MR

[31] Deutsch D., “Quantum computational networks”, Proc. Roy. Soc. London. A, 425 (1989), 73–90 | DOI | MR | Zbl

[32] Fedorov F. I., The Lorentz group, Nauka, Moscow, 1979 | MR

[33] Fedorov F. I., Fedorovykh A. V., “Covariant parameterization of the group $SU(3)$”, Vesti AN BSSR Ser. Fiz.-Mat., 1975, no. 6, 42–46 (in Russian) | Zbl

[34] González P., Vijande J., Valcarce A., Garcilazo H., “A $SU(4)\otimes O(3)$ scheme for nonstrange baryons”, Eur. Phys. J. A, 31 (2007), 515–518 ; hep-ph/0610257 | DOI

[35] Gsponer A.,, Explicit closed form parametrization of $SU(3)$ and $SU(4)$ in terms of complex quaternions and elementary functions, math-ph/0211056

[36] Guidry M., Wu L.-A., Sun Y., Wu C.-L., “An $SU(4)$ model of high-temperature superconductivity and antiferromagnetism”, Phys. Rev. B, 63 (2001), 134516, 11 pp., ages ; cond-mat/0012088 | DOI | Zbl

[37] Hausdorff F., “Untersuchungen über Ordnungstypen: I, II, III”, Ber. über die Verhandlungen der Königl. Sächs. Ges. der Wiss. zu Leipzig. Math.-phys. Klasse, 58 (1906), 106–169 ; Hausdorff F., “Untersuchungen über Ordnungstypen: IV, V”, Ber. über die Verhandlungen der Königl. Sächs. Ges. der Wiss. zu Leipzig. Math.-phys. Klasse, 59 (1907), 84–159 | Zbl | Zbl

[38] Holland D. F., “Finite transformations of $SU(3)$”, J. Math. Phys., 10 (1969), 531–535 | DOI | MR | Zbl

[39] Keane A. J., Barrett R. K., “The conformal group $SO(4,2)$ and Robertson–Walker spacetimes”, Classical Quantum Gravity, 17 (2000), 201–218 ; gr-qc/9907002 | DOI | MR | Zbl

[40] Kihlberg A., Müller V. F., Halbwachs F., “Unitary irreducible representations of $SU(2,2)$”, Gomm. Math. Phys., 3 (1966), 194–217 | DOI | MR | Zbl

[41] Kleefeld F., Dillig M., Trace evaluation of matrix determinants and inversion of $4\times 4$ matrices in terms of Dirac covariants, hep-ph/9806415

[42] Kusnezov D., “Exact matrix expansions for group elements of $SU(N)$”, J. Math. Phys., 36 (1995), 898–906 | DOI | MR | Zbl

[43] Lanczos C., “Linear systems in selfadjoint form”, Amer. Math. Monthly, 65 (1958), 665–679 ; reprinted and commented Cornelius Lanczos Collected published papers with commentaries, vol. 5, eds. W. R. Davis et al., North Carolina State University, Raleigh, 1998, 3191–3205 | DOI | MR | Zbl | MR

[44] Macfarlane A. J., “Description of the symmetry group $SU_3/Z_3$ of the octet model”, Comm. Math. Phys., 11 (1968), 91–98 | DOI | MR

[45] Macfarlane A. J., “Dirac matrices and the Dirac matrix description of Lorentz transformations”, Comm. Math. Phys., 2 (1966), 133–146 | DOI | MR

[46] Macfarlane A. J., “Parametrizations of unitary matrices and related coset spaces”, J. Math. Phys., 21 (1980), 2579–2582 | DOI | MR

[47] Macfarlane A. J., Sudbery A., Weisz P. H., “On Gell-Mann's $\lambda$-matrices, $d$- and $f$-tensors, octets, and parametrizations of $SU(3)$”, Comm. Math. Phys., 11 (1968), 77–90 | DOI | MR

[48] Mack G., “All unitary ray representations of the conformal group $SU(2,2)$ with positive energy”, Comm. Math. Phys., 55 (1977), 1–28 | DOI | MR | Zbl

[49] Mack G., Salam A., “Finite-component field representations of the conformal group”, Ann. Phys., 53 (1969), 174–202 | DOI | MR

[50] Mack G., Todorov I. T., “Irreducibility of the ladder representations of $U(2,2)$ when restricted to the Poincaré group”, J. Math. Phys., 10 (1969), 2078–2085 | DOI | MR | Zbl

[51] Marchuk N. G., A model of the composite structure of quarks and leptons with $SU(4)$ gauge symmetry, hep-ph/9801382

[52] Mishra A., Ma M., Zhang F.-C., “Plaquette ordering in $SU(4)$ antiferromagnets”, Phys. Rev. B, 65 (2002), 214411, 6 pp., ages ; cond-mat/0202132 | DOI

[53] Moler C., Van Loan C., “Nineteen dubious ways to compute the exponential of a matrix”, SIAM Rev., 20 (1978), 801–836 | DOI | MR | Zbl

[54] Moshinsky M., “Wigner coefficients for the $SU_3$ group and some applications”, Rev. Modern Phys., 34 (1962), 813–828 | DOI | MR | Zbl

[55] Mukunda N., Arvind, Chaturvedi S., Simon R., “Bargmann invariants and off-diagonal geometric phases for multi-level quantum systems – a unitary group approach”, Phys. Rev. A, 65 (2003), 012102, 10 pp., ages ; quant-ph/0107006 | DOI | MR

[56] Murnaghan F. D., The unitary and rotation group, Spartan Books, Washington, 1962 | MR

[57] Nelson T. J., “A set of harmonic functions for the group $SU(3)$ as specialized matrix elements of a general finite transformation”, J. Math. Phys., 8 (1967), 857–863 | DOI | MR

[58] Olevskii M. N., “Three-orthogonal systems in spaces of constant curvature in which equation $\Delta_2u+\lambda u=0$ permits the full separation of variables”, Mat. Sb., 27:3 (1950), 379–426 (in Russian) | MR

[59] Raghunathan K., Seetharaman M., Vasan S. S., “A disentanglement relation for $SU(3)$ coherent states”, J. Phys. A: Math. Gen., 22 (1989), L1089–L1092 | DOI | MR | Zbl

[60] Ramakrishna V., Costa F., “On the exponentials of some structured matrices”, J. Phys. A: Math. Gen., 37 (2004), 11613–11628 ; math-ph/0407042 | DOI | MR

[61] Ramakrishna V., Zhou H., On the exponential of matrices in $su(4)$, math-ph/0508018 | MR

[62] Red'kov V. M., Bogush A. A., Tokarevskaya N. G., $4\times4$ matrices in Dirac parametrization: inversion problem and determinant, arXiv:0709.3574

[63] Rosen S. P., “Finite transformations in various representations of $SU(3)$”, J. Math. Phys., 12 (1971), 673–681 | DOI | MR | Zbl

[64] Sánchez-Monroy J. A., Quimbay C. J., $SU(3)$ Maxwell equations and the classical chromodynamics, hep-th/0607203

[65] Schirmer S. G., Greentree A. D., Ramakrishna V., Rabitz H., “Constructive control of quantum systems using factorization of unitary operators”, J. Phys. A: Math. Gen., 35 (2002), 8315–8339 ; quant-ph/0211042 | DOI | MR | Zbl

[66] Ten Kate A., “Dirac algebra and a six-dimensional Lorentz group”, J. Math. Phys., 9 (1968), 181–185 | DOI | MR | Zbl

[67] Terazawa H., Chikashige Y., Akama K., “Unified model of the Nambu–Jona–Lasinio type for all elementary-particle forces”, Phys. Rev. D, 15 (1977), 480–487 | DOI

[68] Terazawa Y., “Subquark model of leptons and quarks”, Phys. Rev. D, 22 (1980), 184–199 | DOI

[69] Tilma T., Byrd M., Sudarshan E. C. G., “A parametrization of bipartite systems based on $SU(4)$ Euler angles”, J. Phys. A: Math. Gen., 35 (2002), 10445–10465 ; math-ph/0202002 | DOI | MR | Zbl

[70] Tilma T., Sudarshan E. C. G., “Generalized Euler angle parametrization for $SU(N)$”, J. Phys. A: Math. Gen., 35 (2002), 10467–10501 ; math-ph/0205016 | DOI | MR | Zbl

[71] Tilma T., Sudarshan E. C. G., “Generalized Euler angle parameterization for $U(N)$ with applications to $SU(N)$ coset volume measures”, J. Geom. Phys., 52 (2004), 263–283 ; math-ph/0210057 | DOI | MR | Zbl

[72] Vlasov A. Yu., Dirac spinors and representations of $\mathrm{GL}(4)$ group in $\mathrm{GR}$, math-ph/0304006

[73] Volovik G. E., “Dark matter from $SU(4)$ model”, JETP Lett., 78 (2003), 691–694 ; hep-ph/0310006 | DOI

[74] Weigert S., “Baker–Campbell–Hausdorff relation for special unitary groups $SU(n)$”, J. Phys. A: Math. Gen., 30 (1997), 8739–8749 ; quant-ph/9710024 | DOI | MR | Zbl

[75] Wilcox R. M., “Exponential operators and parameter differentiation in quantum physics”, J. Math. Phys., 8 (1967), 962–982 | DOI | MR | Zbl