An Infinite Dimensional Approach to the Third Fundamental Theorem of Lie
Symmetry, integrability and geometry: methods and applications, Tome 4 (2008) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We revisit the third fundamental theorem of Lie (Lie III) for finite dimensional Lie algebras in the context of infinite dimensional matrices.
Keywords: Lie algebra; Ado theorem; integration; Lie group; infinite dimensional matrix; representation.
@article{SIGMA_2008_4_a19,
     author = {Richard D. Bourgin and Thierry P. Robart},
     title = {An {Infinite} {Dimensional} {Approach} to the {Third} {Fundamental} {Theorem} of {Lie}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2008},
     volume = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a19/}
}
TY  - JOUR
AU  - Richard D. Bourgin
AU  - Thierry P. Robart
TI  - An Infinite Dimensional Approach to the Third Fundamental Theorem of Lie
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2008
VL  - 4
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a19/
LA  - en
ID  - SIGMA_2008_4_a19
ER  - 
%0 Journal Article
%A Richard D. Bourgin
%A Thierry P. Robart
%T An Infinite Dimensional Approach to the Third Fundamental Theorem of Lie
%J Symmetry, integrability and geometry: methods and applications
%D 2008
%V 4
%U http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a19/
%G en
%F SIGMA_2008_4_a19
Richard D. Bourgin; Thierry P. Robart. An Infinite Dimensional Approach to the Third Fundamental Theorem of Lie. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a19/

[1] Ado I. D., “Note on the representation of finite continuous groups by means of linear substitutions”, Izv. Fiz.-Mat. Obsch. (Kazan), 7 (1935), 1–43 (in Russian)

[2] Ado I. D., “The representation of Lie algebras by matrices”, Transl. Amer. Math. Soc. (1), 9 (1962), 308–327

[3] Beltitua D., Neeb K.-H., Finite-dimensional Lie subalgebras of algebras with continuous inversion, math.FA/0603420

[4] Bochner S., “Formal Lie groups”, Ann. of Math., 47 (1946), 192–201 | DOI | MR | Zbl

[5] Bourgin R., Robart T., Generalization of the concept of invertibility for infinite dimensional matrices, submitted

[6] Bourgin R., Robart T., On Ado's theorem, in preparation

[7] Cartan É., La Topologie des Groupes de Lie, Exposés de Géométrie No. 8, Hermann, Paris, 1936 | Zbl

[8] Grauert H., “On Levi's problem and the imbedding of real-analytic manifolds”, Ann. of Math., 68 (1958), 460–472 | DOI | MR | Zbl

[9] Henrici P., Applied and computational complex analysis, Vol. 1, Wiley, 1974 | MR | Zbl

[10] Malcev A. I., “Sur les groupes topologiques locaux et complets”, C. R. Acad. Sci. URSS, 32 (1941), 606–608 | MR | Zbl

[11] Morrey C. B., “The analytic embedding of abstract real-analytic manifolds”, Ann. of Math., 68 (1958), 159–201 | DOI | MR | Zbl

[12] Olver P. J., “Non-associative local Lie groups”, J. Lie Theory, 6 (1996), 23–51 | MR | Zbl

[13] Robart T., “About the local and formal geometry of PDE”, The geometrical study of differential equations, Contemp. Math., 285, 2001, 183–194 | MR

[14] Smith P. A., “Topological foundations in the theory of continuous transformation groups”, Duke Math. J., 2 (1936), 246–279 | DOI | MR

[15] Smith P. A., “Topological groups”, Proceedings of the International Congress of Mathematicians, Vol. 2 (1950, Cambridge, Mass.), Amer. Math. Soc., Providence, R.I., 1952, 436–441 | MR

[16] Weinstein A., “Groupoids: unifying internal and external symmetry”, Notices Amer. Math. Soc., 43 (1996), 744–752 ; math.RT/9602220 | MR | Zbl