@article{SIGMA_2008_4_a19,
author = {Richard D. Bourgin and Thierry P. Robart},
title = {An {Infinite} {Dimensional} {Approach} to the {Third} {Fundamental} {Theorem} of {Lie}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2008},
volume = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a19/}
}
TY - JOUR AU - Richard D. Bourgin AU - Thierry P. Robart TI - An Infinite Dimensional Approach to the Third Fundamental Theorem of Lie JO - Symmetry, integrability and geometry: methods and applications PY - 2008 VL - 4 UR - http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a19/ LA - en ID - SIGMA_2008_4_a19 ER -
Richard D. Bourgin; Thierry P. Robart. An Infinite Dimensional Approach to the Third Fundamental Theorem of Lie. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a19/
[1] Ado I. D., “Note on the representation of finite continuous groups by means of linear substitutions”, Izv. Fiz.-Mat. Obsch. (Kazan), 7 (1935), 1–43 (in Russian)
[2] Ado I. D., “The representation of Lie algebras by matrices”, Transl. Amer. Math. Soc. (1), 9 (1962), 308–327
[3] Beltitua D., Neeb K.-H., Finite-dimensional Lie subalgebras of algebras with continuous inversion, math.FA/0603420
[4] Bochner S., “Formal Lie groups”, Ann. of Math., 47 (1946), 192–201 | DOI | MR | Zbl
[5] Bourgin R., Robart T., Generalization of the concept of invertibility for infinite dimensional matrices, submitted
[6] Bourgin R., Robart T., On Ado's theorem, in preparation
[7] Cartan É., La Topologie des Groupes de Lie, Exposés de Géométrie No. 8, Hermann, Paris, 1936 | Zbl
[8] Grauert H., “On Levi's problem and the imbedding of real-analytic manifolds”, Ann. of Math., 68 (1958), 460–472 | DOI | MR | Zbl
[9] Henrici P., Applied and computational complex analysis, Vol. 1, Wiley, 1974 | MR | Zbl
[10] Malcev A. I., “Sur les groupes topologiques locaux et complets”, C. R. Acad. Sci. URSS, 32 (1941), 606–608 | MR | Zbl
[11] Morrey C. B., “The analytic embedding of abstract real-analytic manifolds”, Ann. of Math., 68 (1958), 159–201 | DOI | MR | Zbl
[12] Olver P. J., “Non-associative local Lie groups”, J. Lie Theory, 6 (1996), 23–51 | MR | Zbl
[13] Robart T., “About the local and formal geometry of PDE”, The geometrical study of differential equations, Contemp. Math., 285, 2001, 183–194 | MR
[14] Smith P. A., “Topological foundations in the theory of continuous transformation groups”, Duke Math. J., 2 (1936), 246–279 | DOI | MR
[15] Smith P. A., “Topological groups”, Proceedings of the International Congress of Mathematicians, Vol. 2 (1950, Cambridge, Mass.), Amer. Math. Soc., Providence, R.I., 1952, 436–441 | MR
[16] Weinstein A., “Groupoids: unifying internal and external symmetry”, Notices Amer. Math. Soc., 43 (1996), 744–752 ; math.RT/9602220 | MR | Zbl