@article{SIGMA_2008_4_a17,
author = {Anatoly G.G. Meshkov and Maxim Ju. Balakhnev},
title = {Two-Field {Integrable} {Evolutionary} {Systems} of the {Third} {Order} and {Their} {Differential} {Substitutions}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2008},
volume = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a17/}
}
TY - JOUR AU - Anatoly G.G. Meshkov AU - Maxim Ju. Balakhnev TI - Two-Field Integrable Evolutionary Systems of the Third Order and Their Differential Substitutions JO - Symmetry, integrability and geometry: methods and applications PY - 2008 VL - 4 UR - http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a17/ LA - en ID - SIGMA_2008_4_a17 ER -
%0 Journal Article %A Anatoly G.G. Meshkov %A Maxim Ju. Balakhnev %T Two-Field Integrable Evolutionary Systems of the Third Order and Their Differential Substitutions %J Symmetry, integrability and geometry: methods and applications %D 2008 %V 4 %U http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a17/ %G en %F SIGMA_2008_4_a17
Anatoly G.G. Meshkov; Maxim Ju. Balakhnev. Two-Field Integrable Evolutionary Systems of the Third Order and Their Differential Substitutions. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a17/
[1] Ablowitz M. J., Segur M., Solitons and the inverse scattering transform, SIAM, Philadelphia, 1981 | MR | Zbl
[2] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevsky L. P., Theory of solitons: inverse problem method, Nauka, Moscow, 1980 | MR
[3] Drinfeld V. G., Sokolov V. V., “New evolution equations having $(L,A)$ pairs”, Partial differential equations, Trudy Sem. S. L. Soboleva, 2, Inst. Mat., Novosibirsk, 1981, 5–9 (in Russian) | MR
[4] Hirota R., Satsuma J., “Soliton solutions of a coupled Korteweg–de Vries equation”, Phys. Lett. A, 85 (1981), 407–408 | DOI | MR
[5] Antonowicz M., Fordy A., “Coupled KdV equations with multi-Hamiltonian structures”, Phys. D, 28 (1987), 345–357 | DOI | MR | Zbl
[6] Ma W.-X., “A class of coupled KdV systems and their bi-Hamiltonian formulation”, J. Phys. A: Math. Gen., 31 (1998), 7585–7591 ; solv-int/9803009 | DOI | MR | Zbl
[7] Ma W.-X., Pavlov M., “Extending Hamiltonian operators to get bi-Hamiltonian of coupled KdV systems”, Phys. Lett. A, 246 (1998), 511–522 ; solv-int/9807002 | DOI
[8] Fuchssteiner B., “The Lie algebra structure of degenerate Hamiltonian and bi-Hamiltonian systems”, Progr. Theoret. Phys., 68 (1982), 1082–1104 | DOI | MR | Zbl
[9] Nutku Y., Oǧuz Ö., “Bi-Hamiltonian structure of a pair of coupled KdV equations”, Nuovo Cimento, 105 (1990), 1381–1383 | DOI | MR
[10] Gerdt V. P., Zharkov A. Y., “Computer classification of integrable coupled KdV-like systems”, J. Symbolic Comput., 10 (1990), 203–207 | DOI | MR | Zbl
[11] Foursov M. V., “On integrable coupled KdV-type systems”, Inverse Problems, 16 (2000), 259–274 | DOI | MR | Zbl
[12] Zharkov A. Y., “Computer classification of the integrable coupled KdV-like systems with unit main matrix”, J. Symbolic Comput., 15 (1993), 85–90 | DOI | MR | Zbl
[13] Karasu A., “Painlevé classification of coupled Korteweg–de Vries-type systems”, J. Math. Phys., 38 (1997), 3616–3622 | DOI | MR | Zbl
[14] Foursov M. V., “Towards the complete classification of homogeneous two-component integrable equations”, J. Math. Phys., 44 (2003), 3088–3096 | DOI | MR | Zbl
[15] Meshkov A. G., Sokolov V. V., “Integrable evolution equations on the $N$-dimensional sphere”, Comm. Math. Phys., 232 (2002), 1–18 | DOI | MR | Zbl
[16] Meshkov A. G., Sokolov V. V., “Classification of integrable divergent $N$-component evolution systems”, Theoret. and Math. Phys., 139 (2004), 609–622 | DOI | MR | Zbl
[17] Balakhnev M. Ju., “A class of integrable evolutionary vector equations”, Theoret. and Math. Phys., 142 (2005), 8–14 | DOI | MR | Zbl
[18] Balakhnev M. Ju., Meshkov A. G., “Integrable anisotropic evolution equations on a sphere”, SIGMA, 1 (2005), 027, 11 pp., ages ; nlin.SI/0512032 | MR | Zbl
[19] Balakhnev M. Ju., Meshkov A. G., “On a classification of integrable vectorial evolutionary equations”, J. Nonlinear Math. Phys., 15:2 (2008), 212–226 | DOI | MR | Zbl
[20] Kulemin I. V., Meshkov A. G., “To the classification of integrable systems in 1+1 dimensions”, Proceedings Second International Conference “Symmetry in Nonlinear Mathematical Physics” (July 7–13, 1997, Kyiv), eds. M. Shkil, A. Nikitin and V. Boyko, Institute of Mathematics, Kyiv, 1997, 115–121 | MR | Zbl
[21] Meshkov A. G., “On symmetry classification classification of third order evolutionary systems of divergent type”, Fundam. Prikl. Mat., 12:7 (2006), 141–161 (in Russian) | MR
[22] Ibragimov N. Kh., Shabat A. B., “On infinite Lie–Bäcklund algebras”, Funktsional. Anal. i Prilozhen., 14:4 (1980), 79–80 (in Russian) | MR | Zbl
[23] Svinolupov S. I., Sokolov V. V., “Evolution equations with nontrivial conservation laws”, Funktsional. Anal. i Prilozhen., 16:4 (1982), 86–87 | MR | Zbl
[24] Sokolov V. V., Shabat A. B., “Classification of integrable evolution equations”, Soviet Scientific Reviews, Sect. C, 4 (1984), 221–280 | MR | Zbl
[25] Mikhailov A. V., Shabat A. B., Yamilov R. I., “The symmetry approach to the classification of integrable equations. Complete lists of integrable systems”, Russian Math. Surveys, 42:4 (1987), 1–63 | DOI | MR
[26] “The symmetry approach to classification of integrable equations”, What is Integrability?, Springer-Verlag, New York, 1991, 115–184 | MR | MR | Zbl
[27] Fokas A. S., “Symmetries and integrability”, Stud. Appl. Math., 77 (1987), 253–299 | MR | Zbl
[28] Galindo A., Martinez L., “Kernels and ranges in the variational formalism”, Lett. Math. Phys., 2 (1978), 385–390 | DOI | MR | Zbl
[29] J. Sov. Math., 30 (1985), 1975–2035 | DOI | MR
[30] Balakhnev M. Yu., Kulemin I. V., “Differential substitutions for third-order evolution systems”, Differ. Uravn. Protsessy Upr., 2002:1 (2002), 63–69 (in Russian) ; available at http://www.neva.ru/journal/j/ | MR
[31] Soviet Physics JETP, 34:1 (1972), 62–69 | MR
[32] Chen H. H., Lee Y. C., Liu C. S., “Integrability of nonlinear Hamiltonian systems by inverse scattering method”, Phys. Scripta, 20 (1979), 490–492 | DOI | MR | Zbl
[33] Meshkov A. G., “Necessary conditions of the integrability”, Inverse Problems, 10 (1994), 635–653 | DOI | MR | Zbl
[34] Fuchssteiner B., Fokas A. S., “Symplectic structures, their Bäcklund transformations and hereditary symmetries”, Phys. D, 4 (1981/82), 47–66 | DOI | MR
[35] Drinfeld V. G., Sokolov V. V., “Equations that are related to the Korteweg–de Vries equation”, Dokl. Akad. Nauk SSSR, 284:1 (1985), 29–33 (in Russian) | MR
[36] Meshkov A. G., “Tools for symmetry analysis of PDEs”, Differ. Uravn. Protsessy Upr., 2002:1 (2002), 10–62 ; available at http://www.neva.ru/journal/j/ | MR
[37] La P. D., “Integrals of nonlinear equations of evolution and solitary waves”, Comm. Pure Appl. Math., 21 (1968), 467–490 | DOI | MR | Zbl
[38] Manakov S. V., “The method of the inverse scattering problem, and two-dimensional evolution equations”, Uspehi Mat. Nauk, 31:5 (1976), 245–246 (in Russian) | MR | Zbl
[39] Zakharov V. E., “Inverse scattering method”, Solitons, eds. R. K. Bullough and P. J. Caudrey, Springer-Verlag, New York, 1980, 270–309
[40] Dodd R. K., Eilbeck J. C., Gibbon J. D., Morris H. C., Solitons and nonlinear wave equations, Academic Press Inc., London, 1984 | MR
[41] Miura R. M. (ed.), Bäcklund transformations, the inverse scattering method, solitons, and their applications, NSF Research Workshop on Contact Transformations, Lecture Notes in Mathematics, 515, 1976 | MR | Zbl
[42] Matveev V. B., Salle M. A., Darboux transformations and solitons, Springer, Berlin, 1991 | MR
[43] Gu C. H., Hu H. S., Zhou Z. X., Darboux transformations in soliton theory and its geometric applications, Shanghai Scientific and Technical Publishers, Shanghai, 1999
[44] Hirota R., The direct method in soliton theory, Cambridge University Press, Cambridge, 2004 | MR | Zbl
[45] Zienkiewcz O. C., Morgan K., Finite elements and approximation, Wiley-Interscience Publication, New York, 1983 | MR