Two-Field Integrable Evolutionary Systems of the Third Order and Their Differential Substitutions
Symmetry, integrability and geometry: methods and applications, Tome 4 (2008) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A list of forty third-order exactly integrable two-field evolutionary systems is presented. Differential substitutions connecting various systems from the list are found. It is proved that all the systems can be obtained from only two of them. Examples of zero curvature representations with $4\times4$ matrices are presented.
Keywords: integrability; symmetry; conservation law; differential substitutions; zero curvature representation.
@article{SIGMA_2008_4_a17,
     author = {Anatoly G.G. Meshkov and Maxim Ju. Balakhnev},
     title = {Two-Field {Integrable} {Evolutionary} {Systems} of the {Third} {Order} and {Their} {Differential} {Substitutions}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2008},
     volume = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a17/}
}
TY  - JOUR
AU  - Anatoly G.G. Meshkov
AU  - Maxim Ju. Balakhnev
TI  - Two-Field Integrable Evolutionary Systems of the Third Order and Their Differential Substitutions
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2008
VL  - 4
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a17/
LA  - en
ID  - SIGMA_2008_4_a17
ER  - 
%0 Journal Article
%A Anatoly G.G. Meshkov
%A Maxim Ju. Balakhnev
%T Two-Field Integrable Evolutionary Systems of the Third Order and Their Differential Substitutions
%J Symmetry, integrability and geometry: methods and applications
%D 2008
%V 4
%U http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a17/
%G en
%F SIGMA_2008_4_a17
Anatoly G.G. Meshkov; Maxim Ju. Balakhnev. Two-Field Integrable Evolutionary Systems of the Third Order and Their Differential Substitutions. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a17/

[1] Ablowitz M. J., Segur M., Solitons and the inverse scattering transform, SIAM, Philadelphia, 1981 | MR | Zbl

[2] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevsky L. P., Theory of solitons: inverse problem method, Nauka, Moscow, 1980 | MR

[3] Drinfeld V. G., Sokolov V. V., “New evolution equations having $(L,A)$ pairs”, Partial differential equations, Trudy Sem. S. L. Soboleva, 2, Inst. Mat., Novosibirsk, 1981, 5–9 (in Russian) | MR

[4] Hirota R., Satsuma J., “Soliton solutions of a coupled Korteweg–de Vries equation”, Phys. Lett. A, 85 (1981), 407–408 | DOI | MR

[5] Antonowicz M., Fordy A., “Coupled KdV equations with multi-Hamiltonian structures”, Phys. D, 28 (1987), 345–357 | DOI | MR | Zbl

[6] Ma W.-X., “A class of coupled KdV systems and their bi-Hamiltonian formulation”, J. Phys. A: Math. Gen., 31 (1998), 7585–7591 ; solv-int/9803009 | DOI | MR | Zbl

[7] Ma W.-X., Pavlov M., “Extending Hamiltonian operators to get bi-Hamiltonian of coupled KdV systems”, Phys. Lett. A, 246 (1998), 511–522 ; solv-int/9807002 | DOI

[8] Fuchssteiner B., “The Lie algebra structure of degenerate Hamiltonian and bi-Hamiltonian systems”, Progr. Theoret. Phys., 68 (1982), 1082–1104 | DOI | MR | Zbl

[9] Nutku Y., Oǧuz Ö., “Bi-Hamiltonian structure of a pair of coupled KdV equations”, Nuovo Cimento, 105 (1990), 1381–1383 | DOI | MR

[10] Gerdt V. P., Zharkov A. Y., “Computer classification of integrable coupled KdV-like systems”, J. Symbolic Comput., 10 (1990), 203–207 | DOI | MR | Zbl

[11] Foursov M. V., “On integrable coupled KdV-type systems”, Inverse Problems, 16 (2000), 259–274 | DOI | MR | Zbl

[12] Zharkov A. Y., “Computer classification of the integrable coupled KdV-like systems with unit main matrix”, J. Symbolic Comput., 15 (1993), 85–90 | DOI | MR | Zbl

[13] Karasu A., “Painlevé classification of coupled Korteweg–de Vries-type systems”, J. Math. Phys., 38 (1997), 3616–3622 | DOI | MR | Zbl

[14] Foursov M. V., “Towards the complete classification of homogeneous two-component integrable equations”, J. Math. Phys., 44 (2003), 3088–3096 | DOI | MR | Zbl

[15] Meshkov A. G., Sokolov V. V., “Integrable evolution equations on the $N$-dimensional sphere”, Comm. Math. Phys., 232 (2002), 1–18 | DOI | MR | Zbl

[16] Meshkov A. G., Sokolov V. V., “Classification of integrable divergent $N$-component evolution systems”, Theoret. and Math. Phys., 139 (2004), 609–622 | DOI | MR | Zbl

[17] Balakhnev M. Ju., “A class of integrable evolutionary vector equations”, Theoret. and Math. Phys., 142 (2005), 8–14 | DOI | MR | Zbl

[18] Balakhnev M. Ju., Meshkov A. G., “Integrable anisotropic evolution equations on a sphere”, SIGMA, 1 (2005), 027, 11 pp., ages ; nlin.SI/0512032 | MR | Zbl

[19] Balakhnev M. Ju., Meshkov A. G., “On a classification of integrable vectorial evolutionary equations”, J. Nonlinear Math. Phys., 15:2 (2008), 212–226 | DOI | MR | Zbl

[20] Kulemin I. V., Meshkov A. G., “To the classification of integrable systems in 1+1 dimensions”, Proceedings Second International Conference “Symmetry in Nonlinear Mathematical Physics” (July 7–13, 1997, Kyiv), eds. M. Shkil, A. Nikitin and V. Boyko, Institute of Mathematics, Kyiv, 1997, 115–121 | MR | Zbl

[21] Meshkov A. G., “On symmetry classification classification of third order evolutionary systems of divergent type”, Fundam. Prikl. Mat., 12:7 (2006), 141–161 (in Russian) | MR

[22] Ibragimov N. Kh., Shabat A. B., “On infinite Lie–Bäcklund algebras”, Funktsional. Anal. i Prilozhen., 14:4 (1980), 79–80 (in Russian) | MR | Zbl

[23] Svinolupov S. I., Sokolov V. V., “Evolution equations with nontrivial conservation laws”, Funktsional. Anal. i Prilozhen., 16:4 (1982), 86–87 | MR | Zbl

[24] Sokolov V. V., Shabat A. B., “Classification of integrable evolution equations”, Soviet Scientific Reviews, Sect. C, 4 (1984), 221–280 | MR | Zbl

[25] Mikhailov A. V., Shabat A. B., Yamilov R. I., “The symmetry approach to the classification of integrable equations. Complete lists of integrable systems”, Russian Math. Surveys, 42:4 (1987), 1–63 | DOI | MR

[26] “The symmetry approach to classification of integrable equations”, What is Integrability?, Springer-Verlag, New York, 1991, 115–184 | MR | MR | Zbl

[27] Fokas A. S., “Symmetries and integrability”, Stud. Appl. Math., 77 (1987), 253–299 | MR | Zbl

[28] Galindo A., Martinez L., “Kernels and ranges in the variational formalism”, Lett. Math. Phys., 2 (1978), 385–390 | DOI | MR | Zbl

[29] J. Sov. Math., 30 (1985), 1975–2035 | DOI | MR

[30] Balakhnev M. Yu., Kulemin I. V., “Differential substitutions for third-order evolution systems”, Differ. Uravn. Protsessy Upr., 2002:1 (2002), 63–69 (in Russian) ; available at http://www.neva.ru/journal/j/ | MR

[31] Soviet Physics JETP, 34:1 (1972), 62–69 | MR

[32] Chen H. H., Lee Y. C., Liu C. S., “Integrability of nonlinear Hamiltonian systems by inverse scattering method”, Phys. Scripta, 20 (1979), 490–492 | DOI | MR | Zbl

[33] Meshkov A. G., “Necessary conditions of the integrability”, Inverse Problems, 10 (1994), 635–653 | DOI | MR | Zbl

[34] Fuchssteiner B., Fokas A. S., “Symplectic structures, their Bäcklund transformations and hereditary symmetries”, Phys. D, 4 (1981/82), 47–66 | DOI | MR

[35] Drinfeld V. G., Sokolov V. V., “Equations that are related to the Korteweg–de Vries equation”, Dokl. Akad. Nauk SSSR, 284:1 (1985), 29–33 (in Russian) | MR

[36] Meshkov A. G., “Tools for symmetry analysis of PDEs”, Differ. Uravn. Protsessy Upr., 2002:1 (2002), 10–62 ; available at http://www.neva.ru/journal/j/ | MR

[37] La P. D., “Integrals of nonlinear equations of evolution and solitary waves”, Comm. Pure Appl. Math., 21 (1968), 467–490 | DOI | MR | Zbl

[38] Manakov S. V., “The method of the inverse scattering problem, and two-dimensional evolution equations”, Uspehi Mat. Nauk, 31:5 (1976), 245–246 (in Russian) | MR | Zbl

[39] Zakharov V. E., “Inverse scattering method”, Solitons, eds. R. K. Bullough and P. J. Caudrey, Springer-Verlag, New York, 1980, 270–309

[40] Dodd R. K., Eilbeck J. C., Gibbon J. D., Morris H. C., Solitons and nonlinear wave equations, Academic Press Inc., London, 1984 | MR

[41] Miura R. M. (ed.), Bäcklund transformations, the inverse scattering method, solitons, and their applications, NSF Research Workshop on Contact Transformations, Lecture Notes in Mathematics, 515, 1976 | MR | Zbl

[42] Matveev V. B., Salle M. A., Darboux transformations and solitons, Springer, Berlin, 1991 | MR

[43] Gu C. H., Hu H. S., Zhou Z. X., Darboux transformations in soliton theory and its geometric applications, Shanghai Scientific and Technical Publishers, Shanghai, 1999

[44] Hirota R., The direct method in soliton theory, Cambridge University Press, Cambridge, 2004 | MR | Zbl

[45] Zienkiewcz O. C., Morgan K., Finite elements and approximation, Wiley-Interscience Publication, New York, 1983 | MR