The Variational Principle for the Uniform Acceleration and Quasi-Spin in Two Dimensional Space-Time
Symmetry, integrability and geometry: methods and applications, Tome 4 (2008) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The variational principle and the corresponding differential equation for geodesic circles in two dimensional (pseudo)-Riemannian space are being discovered. The relationship with the physical notion of uniformly accelerated relativistic particle is emphasized. The known form of spin-curvature interaction emerges due to the presence of second order derivatives in the expression for the Lagrange function. The variational equation itself reduces to the unique invariant variational equation of constant Frenet curvature in two dimensional (pseudo)-Euclidean geometry.
Keywords: covariant Ostrohrads'kyj mechanics; spin; concircular geometry; uniform acceleration.
@article{SIGMA_2008_4_a15,
     author = {Roman Ya. Matsyuk},
     title = {The {Variational} {Principle} for the {Uniform} {Acceleration} and {Quasi-Spin} in {Two} {Dimensional} {Space-Time}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2008},
     volume = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a15/}
}
TY  - JOUR
AU  - Roman Ya. Matsyuk
TI  - The Variational Principle for the Uniform Acceleration and Quasi-Spin in Two Dimensional Space-Time
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2008
VL  - 4
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a15/
LA  - en
ID  - SIGMA_2008_4_a15
ER  - 
%0 Journal Article
%A Roman Ya. Matsyuk
%T The Variational Principle for the Uniform Acceleration and Quasi-Spin in Two Dimensional Space-Time
%J Symmetry, integrability and geometry: methods and applications
%D 2008
%V 4
%U http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a15/
%G en
%F SIGMA_2008_4_a15
Roman Ya. Matsyuk. The Variational Principle for the Uniform Acceleration and Quasi-Spin in Two Dimensional Space-Time. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a15/

[1] Hill E. L., “On the kinematics of uniformly accelerated motions and classical magnetic theory”, Phys. Rev., 72 (1947), 143–149 | DOI | MR | Zbl

[2] Yano K., “Concircular geometry I. Concircular transformations”, Proc. Imp. Acad. Jap., 16 (1940), 195–200 | DOI | MR

[3] Matsyuk R. Ya., “Variational principle for uniformly accelerated motion”, Mat. Metody Fiz.-Mekh. Polya, 16 (1982), 84–88 (in Russian) | MR | Zbl

[4] Arodź H., Sitarz A., Wȩgrzyn P., “On relativistic point particles with curvature-dependent actions”, Acta Phys. Polon. B, 20 (1989), 921–939 | MR

[5] Matsyuk R.Ya., Poincaré-invariant equations of motion in Lagrangian mechanics with higher derivatives, PhD Thesis, Institute for Applied Problems in Mechanics and Mathematics, L'viv, 1984 (in Russian)

[6] Logan J. D., Invariant variational principles, Academic Press, New York, 1977 | MR

[7] Kawaguchi M., “An introduction to the theory of higher order spaces. II. Higher order spaces in multiple parameters”, RAAG Memoirs, 4 (1968), 578–592

[8] Matsyuk R. Ya., “Autoparallel variational description of the free relativistic top third order dynamics”, Proceedings of Eight International Conference “Differential Geometry and Its Applications” (August 27–31, 2001, Opava, Czech Republic), eds. O. Kowalski et al., Silesian Univ., Opava, 2002, 447–452 | MR

[9] de Léon M., Rodrigues P. R., Generalized classical mechanics and field theory, Elsevier, Amsterdam, 1985

[10] Matsyuk R. Ya., “On the existence of a Lagrangian for a system of ordinary differential equations”, Mat. Metody Fiz.-Mekh. Polya, 13 (1981), 34–38 (in Russian) | MR | Zbl

[11] Soviet Phys. Dokl., 30 (1985), 458–460 | MR

[12] Arreaga G., Capovilla R., Guven J., “Frenet–Serret dynamics”, Classical Quantum Gravity, 18 (2001), 5065–5083 ; hep-th/0105040 | DOI | MR | Zbl

[13] Matsyuk R. Ya., “The variational principle for geodesic circles”, Boundary Value Problems of Mathematical Physics, Naukova Dumka, Kiev, 1981, 79–81 (in Russian)

[14] Acatrinei C. S., “A path integral leading to higher order Lagrangians”, J. Phys. A: Math. Gen., 40 (2007), F929–F933 ; arXiv:0708.4351 | DOI | MR | Zbl

[15] Dixon W. G., “Dynamics of extended bodies in general relativity. I. Momentum and angular momentum”, Proc. Roy. Soc. London. Ser. A., 314 (1970), 499–527 | DOI | MR

[16] Yano K., Ishihara Sh., Tangent and cotangent bundles, Marcel Dekker, New York, 1973 | MR | Zbl

[17] Ehresmann Ch., “Les prolongements dúne variété différentiable. I. Calcul des jets, prolongement principal”, C. R. Math. Acad. Sci. Paris, 233 (1951), 598–600 | MR | Zbl

[18] Kruprová O., The geometry of ordinary variational equations, Lect. Notes in Math., 1678, Springer-Verlag, Berlin, 1997 | MR

[19] Tulczyjew W. M., “Sur la différentielle de Lagrange”, C. R. Math. Acad. Sci. Paris, 280 (1975), 1295–1298 | MR | Zbl