@article{SIGMA_2008_4_a15,
author = {Roman Ya. Matsyuk},
title = {The {Variational} {Principle} for the {Uniform} {Acceleration} and {Quasi-Spin} in {Two} {Dimensional} {Space-Time}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2008},
volume = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a15/}
}
TY - JOUR AU - Roman Ya. Matsyuk TI - The Variational Principle for the Uniform Acceleration and Quasi-Spin in Two Dimensional Space-Time JO - Symmetry, integrability and geometry: methods and applications PY - 2008 VL - 4 UR - http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a15/ LA - en ID - SIGMA_2008_4_a15 ER -
%0 Journal Article %A Roman Ya. Matsyuk %T The Variational Principle for the Uniform Acceleration and Quasi-Spin in Two Dimensional Space-Time %J Symmetry, integrability and geometry: methods and applications %D 2008 %V 4 %U http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a15/ %G en %F SIGMA_2008_4_a15
Roman Ya. Matsyuk. The Variational Principle for the Uniform Acceleration and Quasi-Spin in Two Dimensional Space-Time. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a15/
[1] Hill E. L., “On the kinematics of uniformly accelerated motions and classical magnetic theory”, Phys. Rev., 72 (1947), 143–149 | DOI | MR | Zbl
[2] Yano K., “Concircular geometry I. Concircular transformations”, Proc. Imp. Acad. Jap., 16 (1940), 195–200 | DOI | MR
[3] Matsyuk R. Ya., “Variational principle for uniformly accelerated motion”, Mat. Metody Fiz.-Mekh. Polya, 16 (1982), 84–88 (in Russian) | MR | Zbl
[4] Arodź H., Sitarz A., Wȩgrzyn P., “On relativistic point particles with curvature-dependent actions”, Acta Phys. Polon. B, 20 (1989), 921–939 | MR
[5] Matsyuk R.Ya., Poincaré-invariant equations of motion in Lagrangian mechanics with higher derivatives, PhD Thesis, Institute for Applied Problems in Mechanics and Mathematics, L'viv, 1984 (in Russian)
[6] Logan J. D., Invariant variational principles, Academic Press, New York, 1977 | MR
[7] Kawaguchi M., “An introduction to the theory of higher order spaces. II. Higher order spaces in multiple parameters”, RAAG Memoirs, 4 (1968), 578–592
[8] Matsyuk R. Ya., “Autoparallel variational description of the free relativistic top third order dynamics”, Proceedings of Eight International Conference “Differential Geometry and Its Applications” (August 27–31, 2001, Opava, Czech Republic), eds. O. Kowalski et al., Silesian Univ., Opava, 2002, 447–452 | MR
[9] de Léon M., Rodrigues P. R., Generalized classical mechanics and field theory, Elsevier, Amsterdam, 1985
[10] Matsyuk R. Ya., “On the existence of a Lagrangian for a system of ordinary differential equations”, Mat. Metody Fiz.-Mekh. Polya, 13 (1981), 34–38 (in Russian) | MR | Zbl
[11] Soviet Phys. Dokl., 30 (1985), 458–460 | MR
[12] Arreaga G., Capovilla R., Guven J., “Frenet–Serret dynamics”, Classical Quantum Gravity, 18 (2001), 5065–5083 ; hep-th/0105040 | DOI | MR | Zbl
[13] Matsyuk R. Ya., “The variational principle for geodesic circles”, Boundary Value Problems of Mathematical Physics, Naukova Dumka, Kiev, 1981, 79–81 (in Russian)
[14] Acatrinei C. S., “A path integral leading to higher order Lagrangians”, J. Phys. A: Math. Gen., 40 (2007), F929–F933 ; arXiv:0708.4351 | DOI | MR | Zbl
[15] Dixon W. G., “Dynamics of extended bodies in general relativity. I. Momentum and angular momentum”, Proc. Roy. Soc. London. Ser. A., 314 (1970), 499–527 | DOI | MR
[16] Yano K., Ishihara Sh., Tangent and cotangent bundles, Marcel Dekker, New York, 1973 | MR | Zbl
[17] Ehresmann Ch., “Les prolongements dúne variété différentiable. I. Calcul des jets, prolongement principal”, C. R. Math. Acad. Sci. Paris, 233 (1951), 598–600 | MR | Zbl
[18] Kruprová O., The geometry of ordinary variational equations, Lect. Notes in Math., 1678, Springer-Verlag, Berlin, 1997 | MR
[19] Tulczyjew W. M., “Sur la différentielle de Lagrange”, C. R. Math. Acad. Sci. Paris, 280 (1975), 1295–1298 | MR | Zbl