@article{SIGMA_2008_4_a13,
author = {Samira Bahrami and Sadolah Nasiri},
title = {Symmetry {Transformation} in {Extended} {Phase} {Space:} the {Harmonic} {Oscillator} in the {Husimi} {Representation}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2008},
volume = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a13/}
}
TY - JOUR AU - Samira Bahrami AU - Sadolah Nasiri TI - Symmetry Transformation in Extended Phase Space: the Harmonic Oscillator in the Husimi Representation JO - Symmetry, integrability and geometry: methods and applications PY - 2008 VL - 4 UR - http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a13/ LA - en ID - SIGMA_2008_4_a13 ER -
%0 Journal Article %A Samira Bahrami %A Sadolah Nasiri %T Symmetry Transformation in Extended Phase Space: the Harmonic Oscillator in the Husimi Representation %J Symmetry, integrability and geometry: methods and applications %D 2008 %V 4 %U http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a13/ %G en %F SIGMA_2008_4_a13
Samira Bahrami; Sadolah Nasiri. Symmetry Transformation in Extended Phase Space: the Harmonic Oscillator in the Husimi Representation. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a13/
[1] Bohm D., Hiley B. J., “Unbroken quantum realism, from microscopic to macroscopic levels”, Phys. Rev. Lett., 55 (1985), 2511–2514 | DOI | MR
[2] Holland P. R., The quantum theory of motion, Cambridge University Press, 1993, 68–69 | MR
[3] Takabayashi T., “The formulation of quantum mechanics in terms of ensemble in phase space”, Progr. Theoret. Phys., 11 (1954), 341–373 | DOI | MR
[4] Muga J. G., Sala R., Snider R. F., “Comparison of classical and quantum evolution of phase space distribution functions”, Phys. Scripta, 47 (1993), 732–739 | DOI
[5] Brown M. R., The quantum potential: the breakdown of classical symplectic symmetry and the energy of localization and dispersion,, quant-ph/9703007
[6] Holland P. R., “Quantum back-reaction and the particle law of motion”, J. Phys. A: Math. Gen., 39 (2006), 559–564 | DOI | MR | Zbl
[7] Shojai F., Shojai A., “Constraints algebra and equation of motion in Bohmian interpretation of quantum gravity”, Classical Quantum Gravity, 21 (2004), 1–9 ; gr-qc/0409035 | DOI | MR | Zbl
[8] Carroll R., Fluctuations, gravity, and the quantum potential, gr-qc/0501045
[9] Nasiri S., “Quantum potential and symmetries in extended phase space”, SIGMA, 2 (2006), 062, 12 pp., ages ; quant-ph/0511125 | MR | Zbl
[10] Carroll R., Some fundamental aspects of a quantum potential, quant-ph/0506075
[11] Sobouti Y., Nasiri S., “A phase space formulation of quantum state functions”, Internat. J. Modern Phys. B, 7 (1993), 3255–3272 | DOI | MR
[12] Nasiri S., Sobouti Y., Taati F., “Phase space quantum mechanics – direct”, J. Math. Phys., 47 (2006), 092106, 15 pp., ages ; quant-ph/0605129 | DOI | MR | Zbl
[13] Nasiri S., Khademi S., Bahrami S., Taati F., “Generalized distribution functions in extended phase space”, Proceedings QST4, Vol. 2, ed. V. K. obrev, Heron Press Sofia, 2006, 820–826
[14] Wigner E., “On the quantum correction for thermodynamic equillibrium”, Phys. Rev., 40 (1932), 749–759 | DOI
[15] Lee H. W., “Theory and application of the quantum phase space distribution functions”, Phys. Rep., 259 (1995), 147–211 | DOI | MR
[16] de Gosson M., “Symplectically covariant Schrödinger equation in phase space”, J. Phys. A: Math. Gen., 38 (2005), 9263–9287 ; math-ph/0505073 | DOI | MR | Zbl
[17] Jannussis A., Patargias N., Leodaris A., Phillippakis T., Streclas A., Papatheos V., Some remarks on the nonnegative quantum mechanical distribution functions, Preprint, Department of Theoretical Physics, University of Patras, 1982 | MR
[18] Husimi K., “Some formal properties of the density matrix”, Proc. Phys.-Math. Soc. Japan, 22 (1940), 264–314