Classical $R$-Operators and Integrable Generalizations of Thirring Equations
Symmetry, integrability and geometry: methods and applications, Tome 4 (2008) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct different integrable generalizations of the massive Thirring equations corresponding loop algebras $\widetilde{\mathfrak g}^\sigma$ in different gradings and associated “triangular” $R$-operators. We consider the most interesting cases connected with the Coxeter automorphisms, second order automorphisms and with “Kostant–Adler–Symes” $R$-operators. We recover a known matrix generalization of the complex Thirring equations as a partial case of our construction.
Keywords: infinite-dimensional Lie algebras; classical $R$-operators; hierarchies of integrable equations.
@article{SIGMA_2008_4_a10,
     author = {Taras V. Skrypnik},
     title = {Classical $R${-Operators} and {Integrable} {Generalizations} of {Thirring} {Equations}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2008},
     volume = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a10/}
}
TY  - JOUR
AU  - Taras V. Skrypnik
TI  - Classical $R$-Operators and Integrable Generalizations of Thirring Equations
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2008
VL  - 4
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a10/
LA  - en
ID  - SIGMA_2008_4_a10
ER  - 
%0 Journal Article
%A Taras V. Skrypnik
%T Classical $R$-Operators and Integrable Generalizations of Thirring Equations
%J Symmetry, integrability and geometry: methods and applications
%D 2008
%V 4
%U http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a10/
%G en
%F SIGMA_2008_4_a10
Taras V. Skrypnik. Classical $R$-Operators and Integrable Generalizations of Thirring Equations. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a10/

[1] Belavin A., Drinfeld V., “On solutions of the classical Yang–Baxter equations for simple Lie algebra”, Funct. Anal. Appl., 16:3 (1982), 1–29 | MR | Zbl

[2] Belavin A., Drinfeld V., Triangular equation and simple Lie algebras, Preprint no. 18, Institute of Theoretical Physics, Chernogolovka, 1982

[3] Flaschka H., Newell A., Ratiu T., “Kac–Moody Lie algebras and soliton equations. II. Lax equations associated with $A_1^{(1)}$”, Phys. D, 9 (1983), 303–323 | MR

[4] Guil F., “Banach–Lie groups and integrable systems”, Inverse Problems, 5 (1989), 559–571 | DOI | MR | Zbl

[5] Guil F., Manas M., “The homogeneous Heisenberg subalgebra and equations of AKS type”, Lett. Math. Phys., 19 (1990), 89–95 | DOI | MR | Zbl

[6] Holod P., Integrable Hamiltonian systems on the orbits of affine Lie groups and periodical problem for mKdV equation, Preprint ITF-82-144R, Institute for Theoretical Physics, Kyiv, 1982 (in Russian) | Zbl

[7] Holod P., “Hamiltonian systems on the orbits of affine Lie groups and finite-band integration of nonlinear equations”, Proceedings of the International Conference “Nonlinear and Turbulent Process in Physics” (1983, Kiev), Harwood Academic Publ., Chur, 1984, 1361–1367 | MR

[8] Kac V., Infinite-dimensional Lie algebras, Mir, Moscow, 1993 | MR | Zbl

[9] Mikhailov A., “Integrability of the two dimensional thirring model”, Pis'ma Zh. Eksper. Teoret. Fiz., 23 (1976), 320–323 (in Russian)

[10] Newell A., Solitons in mathematics and physics, CBMS-NSF Regional Conference Series in Applied Mathematics, 48, SIAM, Philadelphia, PA, 1985 | MR

[11] Reyman A., Semenov-Tian-Shansky M., “Group theoretical methods in the theory of finite-dimensional integrable systems”, VINITI, Current Problems in Mathematics. Fundamental Directions, 6, 1989, 145–147 (in Russian)

[12] Semenov-Tian-Shansky M., “What classical $r$-matrix really is?”, Funct. Anal. Appl., 17 (1983), 259–272 | DOI

[13] Skrypnyk T., “Dual $R$-matrix integrability”, Theoret. and Math. Phys., 155:1 (2008), 633–645 | DOI | MR | Zbl

[14] Skrypnyk T., “Quasigraded Lie algebras, Kostant–Adler scheme and integrable hierarchies”, Theoret. and Math. Phys., 142:2 (2005), 275–288 | MR | Zbl

[15] Tsuchida T., Wadati M., Complete integrability of the derivative non-linear Shcrödinger-type equations, solv-int/9908006