@article{SIGMA_2008_4_a0,
author = {Miloslav Znojil},
title = {On the {Role} of the {Normalization} {Factors} $\kappa_n$ and of the {Pseudo-Metric} $\mathcal P\neq\mathcal P^\dagger$ in {Crypto-Hermitian} {Quantum} {Models}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2008},
volume = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a0/}
}
TY - JOUR AU - Miloslav Znojil TI - On the Role of the Normalization Factors $\kappa_n$ and of the Pseudo-Metric $\mathcal P\neq\mathcal P^\dagger$ in Crypto-Hermitian Quantum Models JO - Symmetry, integrability and geometry: methods and applications PY - 2008 VL - 4 UR - http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a0/ LA - en ID - SIGMA_2008_4_a0 ER -
%0 Journal Article %A Miloslav Znojil %T On the Role of the Normalization Factors $\kappa_n$ and of the Pseudo-Metric $\mathcal P\neq\mathcal P^\dagger$ in Crypto-Hermitian Quantum Models %J Symmetry, integrability and geometry: methods and applications %D 2008 %V 4 %U http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a0/ %G en %F SIGMA_2008_4_a0
Miloslav Znojil. On the Role of the Normalization Factors $\kappa_n$ and of the Pseudo-Metric $\mathcal P\neq\mathcal P^\dagger$ in Crypto-Hermitian Quantum Models. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a0/
[1] Bender C. M., Boettcher S., “Real spectra in non-Hermitian Hamiltonians having $\mathcal{PT}$ symmetry”, Phys. Rev. Lett., 80 (1998), 5243–5246 ; physics/9712001 | DOI | MR | Zbl
[2] Mostafazadeh A., “Pseudo-Hermiticity versus $\mathcal{PT}$ symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian”, J. Math. Phys., 43 (2002), 205–214 ; ; Mostafazadeh A., “Pseudo-Hermiticity versus $\mathcal{PT}$-symmetry II: A complete characterization of non-Hermitian Hamiltonians with a real spectrum”, J. Math. Phys., 43 (2002), 2814–2816 ; ; Mostafazadeh A., “Pseudo-Hermiticity versus $\mathcal{PT}$-symmetry III: Equivalence of pseudo-Hermiticity and the presence of antilinear symmetries”, J. Math. Phys., 43 (2002), 3944–3951 ; ; Mostafazadeh A., “Pseudo-Hermiticity for a class of nondiagonalizable hamiltonians”, J. Math. Phys., 43 (2002), 6343–6352 ; ; Erratum J. Math. Phys., 44 (2003), 943 math-ph/0107001math-ph/0110016math-ph/0203005math-ph/0207009 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | DOI | MR | Zbl
[3] Solombrino L., “Weak pseudo-Hermiticity and antilinear commutant”, J. Math. Phys., 43 (2002), 5439–5447 ; quant-ph/0203101 | DOI | MR
[4] Blasi A., Scolarici G., Solombrino L., “Pseudo-Hermitian Hamiltonians, indefinite inner product spaces and their symmetries”, J. Phys. A: Math. Gen., 37 (2004), 4335–4351 ; quant-ph/0310106 | DOI | MR | Zbl
[5] Dorey P., Dunning C., Tateo R., “Spectral equivalences, Bethe ansatz equations, and reality properties in $\mathcal{PT}$-symmetric quantum mechanics”, J. Phys. A: Math. Gen., 34 (2001), 5679–5704 ; ; Dorey P., Dunning C., Tateo R., “Supersymmetry and the spontaneous breakdown of $\mathcal{PT}$ symmetry”, J. Phys. A: Math. Gen., 34 (2001), L391–L400 ; ; Znojil M., Tater M., “Complex Calogero model with real energies”, J. Phys. A: Math. Gen., 34 (2001), 1793–1803 ; ; Bender C. M., Brody D. C., Jones H. F., “Complex extension of quantum mechanics”, Phys. Rev. Lett., 89 (2002), 270401, 4 pp., ages ; hep-th/0103051hep-th/0104119quant-ph/0010087quant-ph/0208076 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR
[6] Bender C. M., “Making sense of non-Hermitian Hamiltonians”, Rep. Progr. Phys., 70 (2007), 947–1018 ; hep-th/0703096 | DOI | MR
[7] Kato T., Perturbation theory for linear operators, Springer, Berlin, 1995 | MR
[8] Scholtz F. G., Geyer H. B., Hahne F. J. W., “Quasi-Hermitian operators in quantum mechanics and the variational principle”, Ann. Phys. (NY), 213 (1992), 74–101 | DOI | MR | Zbl
[9] Znojil M., Geyer H. B., “Construction of a unique metric in quasi-Hermitian quantum mechanics: non-existence of the charge operator in a $2\times2$ matrix model”, Phys. Lett. B, 640 (2006), 52–56 ; ; Erratum Phys. Lett. B, 649 (2007), 494 quant-ph/0607104 | DOI | MR | DOI | MR
[10] Smilga A., Private communication
[11] Feshbach H., Villars F., “Elementary relativistic wave mechanics of spin 0 and spin 1/2 particles”, Rev. Modern Phys., 30 (1958), 24–45 | DOI | MR | Zbl
[12] Znojil M., “Relativistic supersymmetric quantum mechanics based on Klein–Gordon equation”, J. Phys. A: Math. Gen., 37 (2004), 9557–9571 ; ; Znojil M., “Solvable relativistic quantum dots with vibrational spectra”, Czech. J. Phys., 55 (2005), 1187–1192 ; hep-th/0408232quant-ph/0506017 | DOI | MR | Zbl | DOI | MR
[13] Mostafazadeh A., “Hilbert space structures on the solution space of Klein–Gordon type evolution equations”, Classical Quantum Gravity, 20 (2003), 155–172 ; math-ph/0209014 | DOI | MR
[14] Znojil M., “Coupled-channel version of $\mathcal{PT}$-symmetric square well”, J. Phys. A: Math. Gen., 39 (2006), 441–455 ; quant-ph/0511085 | DOI | MR | Zbl
[15] Günther U., Stefani F., Znojil M., “MHD $\alpha^2$-dynamo, Squire equation and $\mathcal{PT}$-symmetric interpolation between square well and harmonic oscillator”, J. Math. Phys., 46 (2005), 063504, 22 pp., ages ; math-ph/0501069 | DOI | MR | Zbl
[16] Mostafazadeh A., Loran F., Propagation of electromagnetic waves in linear media and pseudo-Hermiticity, physics/0703080 | MR
[17] Znojil M., “$\mathcal{PT}$-symmetric regularizations in supersymmetric quantum mechanics”, J. Phys. A: Math. Gen., 37 (2004), 10209–10222 ; ; Caliceti E., Cannata F., Znojil M., Ventura A., “Construction of $\mathcal{PT}$-asymmetric non-Hermitian Hamiltonians with $\mathcal{CPT}$-symmetry”, Phys. Lett. A, 335 (2005), 26–30 ; ; Bagchi B., Banerjee A., Caliceti E., Cannata F., Geyer H. B., Quesne C., Znojil M., “$\mathcal{CPT}$-conserving Hamiltonians and their nonlinear supersymmetrization using differential charge-operators $\mathcal C$”, Internat. J. Modern Phys. A, 20 (2005), 7107–7128 ; hep-th/0404145math-ph/0406031hep-th/0412211 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl
[18] Znojil M., “Strengthened $\mathcal{PT}$-symmetry with $\mathcal P\neq\mathcal P^\dagger$”, Phys. Lett. A, 353 (2006), 463–468 ; quant-ph/0601048 | DOI | MR
[19] Mostafazadeh A., “Is weak pseudo-Hermiticity weaker than pseudo-Hermiticity?”, J. Math. Phys., 47 (2006), 092101, 10 pp., ages ; quant-ph/0605110 | DOI | MR | Zbl
[20] Horn R. A., Johnson C. R., Matrix analysis, Cambridge University Press, Cambridge, 1999 | MR
[21] Bagchi B., Quesne C., “Pseudo-Hermiticity, weak pseudo-Hermiticity and eta-orthogonality”, Phys. Lett. A, 301 (2002), 173–176 ; quant-ph/0206055 | DOI | MR | Zbl
[22] Znojil M., “Exactly solvable models with $\mathcal{PT}$-symmetry and with an asymmetric coupling of channels”, J. Phys. A: Math. Gen., 39 (2006), 4047–4061 ; quant-ph/0511194 | DOI | MR | Zbl
[23] Znojil M., Conservation of pseudo-norm in $\mathcal{PT}$ symmetric quantum mechanics, math-ph/0104012 | MR
[24] Buslaev V., Grecchi V., “Equivalence of unstable anharmonic oscillators and double well”, J. Phys. A: Math. Gen., 26 (1993), 5541–5549 | DOI | MR | Zbl
[25] Znojil M., “$\mathcal{PT}$-symmetric harmonic oscillators”, Phys. Lett. A, 259 (1999), 220–223 ; ; Lévai G., Znojil M., “Systematic search for $\mathcal{PT}$ symmetric potentials with real energy spectra”, J. Phys. A: Math. Gen., 33 (2000), 7165–7180 ; Bagchi B., Quesne C., Znojil M., “Generalized continuity equation and modified normalization in $\mathcal{PT}$-symmetric quantum mechanics”, Modern Phys. Lett. A, 16 (2001), 2047–2057 ; quant-ph/9905020quant-ph/0108096 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl