Mots-clés : Hermite
@article{SIGMA_2007_3_a44,
author = {J. Chris Eilbeck and Victor Z. Enolski and Emma Previato},
title = {Spectral {Curves} of {Operators} with {Elliptic} {Coefficients}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2007},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a44/}
}
TY - JOUR AU - J. Chris Eilbeck AU - Victor Z. Enolski AU - Emma Previato TI - Spectral Curves of Operators with Elliptic Coefficients JO - Symmetry, integrability and geometry: methods and applications PY - 2007 VL - 3 UR - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a44/ LA - en ID - SIGMA_2007_3_a44 ER -
J. Chris Eilbeck; Victor Z. Enolski; Emma Previato. Spectral Curves of Operators with Elliptic Coefficients. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a44/
[1] Arscott F. M., Periodic differential equations. An introduction to Mathieu, Lamé, and Allied functions, International Series of Monographs in Pure and Applied Mathematics, 66, A Pergamon Press Book, The Macmillan Co., New York, 1964 | MR | Zbl
[2] Baker H. F., An introduction to the theory of multiply-periodic functions, University Press, Cambridge, 1907 | Zbl
[3] Belokolos E. D., Enolskii V. Z., “Reduction of Abelian functions and algebraically integrable systems. I”, J. Math. Sci., 106 (2001), 3395–3486, Complex Analysis and Representation Theory, 2 | DOI | MR | Zbl
[4] Belokolos E. D., Enolskii V. Z., “Reduction of Abelian functions and algebraically integrable systems. II”, J. Math. Sci., 108:3 (2002), 295–374, Complex Analysis and Representation Theory. 3 | DOI | MR | Zbl
[5] Buchstaber V. M., Enol'skiĭ V. Z., Leĭkin D. V., “Hyperelliptic Kleinian functions and applications”, Solitons, geometry, and topology: on the crossroad, Amer. Math. Soc. Transl. Ser. 2, 179, Amer. Math. Soc., Providence, RI, 1997, 1–33 ; solv-int/9603005 | MR
[6] Earle C. J., “The genus two Jacobians that are isomorphic to a product of elliptic curves”, The Geometry of Riemann Surfaces and Abelian Varieties, Contemp. Math., 397, 2006, 27–36 | MR | Zbl
[7] Eilbeck J. C., Ènol'skiĭ V. Z., “Elliptic Baker–Akhiezer functions and an application to an integrable dynamical system”, J. Math. Phys., 35 (1994), 1192–1201 | DOI | MR | Zbl
[8] Eilbeck J. C., Enol'skii V. Z., “Some applications of computer algebra to problems in theoretical physics”, Math. Comput. Simulation, 40 (1996), 443–452 | DOI
[9] Eilbeck J. C., Enolskii V. Z., Previato E., “Varieties of elliptic solitons”, J. Phys. A: Math. Gen., 34 (2001), 2215–2227 | DOI | MR | Zbl
[10] Flédrich P., Treibich A., “Hyperelliptic osculating covers and KdV solutions periodic in $t$”, Int. Math. Res. Not., 2006 (2006), Art. ID 73476, 17 pp., ages | DOI | MR
[11] Gesztesy F., Weikard R., “Elliptic algebro-geometric solutions of the KdV and AKNS hierarchies – an analytic approach”, Bull. Amer. Math. Soc. (N.S.), 35 (1998), 271–317 ; solv-int/9809005 | DOI | MR | Zbl
[12] Gesztesy F., Weikard R., “A characterization of all elliptic algebro-geometric solutions of the AKNS hierarchy”, Acta Math., 181 (1998), 63–108 ; solv-int/9705018 | DOI | MR | Zbl
[13] Grosset M.-P., Veselov A. P., “Elliptic Faulhaber polynomials and Lamé densities of states”, Int. Math. Res. Not., 2006 (2006), Art. ID 62120, 31 pp., ages ; math-ph/0508066 | DOI | MR
[14] Halphen M., Traité des fonctions elliptiques et des leurs applications, Gauthier-Villars, Paris, 1888 | Zbl
[15] Kani E., “Elliptic curves on abelian surfaces”, Manuscripta Math., 84 (1994), 199–223 | DOI | MR | Zbl
[16] Kennedy D. H., Little sparrow: a portrait of Sophia Kovalevsky, Ohio University Press, Athens, OH, 1983 | MR
[17] Funct. Anal. Appl., 14:4 (1980), 282–290 | DOI | MR | Zbl
[18] Maier R. S., “Lamé polynomials, hyperelliptic reductions and Lamé band structure”, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 366 (2008), 1115–1153 ; math-ph/0309005 | DOI | MR | Zbl
[19] Martens H. H., “A footnote to the Poincaré complete reducibility theorem”, Publ. Mat., 36 (1992), 111–129 | MR | Zbl
[20] Matsumoto K., “Theta constants associated with the cyclic triple coverings of the complex projective line branching at six points”, Publ. Res. Inst. Math. Sci., 37 (2001), 419–440 ; math.AG/0008025 | DOI | MR | Zbl
[21] Matveev V. B., Smirnov A. O., “On the link between the Sparre equation and Darboux–Treibich–Verdier equation”, Lett. Math. Phys., 76 (2006), 283–295 | DOI | MR | Zbl
[22] Picard E., “Sur les fonctions de deux variables indépendentes analogues aux fonctions modulaires”, Acta Math., 2 (1883), 114–135 | DOI | MR
[23] Prapavessi D. T., “On the Jacobian of the Klein curve”, Proc. Amer. Math. Soc., 122 (1994), 971–978 | DOI | MR | Zbl
[24] Previato E., “Another algebraic proof of Weil's reciprocity”, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. (9) Mat. Appl., 2 (1991), 167–171 | MR | Zbl
[25] Rauch H. E., Lewittes J., “The Riemann surface of Klein with 168 automorphisms”, Problems in Analysis, papers dedicated to Salomon Bochner, 1969, Princeton Univ. Press, Princeton, NJ, 1970, 297–308 | MR | Zbl
[26] Quine J. R., “Jacobian of the Picard curve”, Extremal Riemann Surfaces (1995, San Francisco, CA), Contemp. Math., 201, 1997, 33–41 | MR | Zbl
[27] Shiga H., “On the representation of the Picard modular function by $\theta$ constants I–II”, Publ. Res. Inst. Math. Sci., 24 (1988), 311–360 | DOI | MR | Zbl
[28] Segal G., Wilson G., “Loop groups and equations of KdV type”, Inst. Hautes Études Sci. Publ. Math., 61 (1985), 5–65 | DOI | MR | Zbl
[29] Shaska T., Völklein H., “Elliptic subfields and automorphisms of genus 2 function fields”, Algebra, Arithmetic and Geometry with Applications (West Lafayette, IN, 2000), Springer, Berlin, 2004, 703–723 ; math.AG/0107142 | MR
[30] Theoret. and Math. Phys., 100:2 (1994), 937–947 | DOI | MR | Zbl
[31] Takemura K., “The Heun equation and the Calogero–Moser–Sutherland system. I. The Bethe Ansatz method”, Comm. Math. Phys., 235 (2003), 467–494 ; math.CA/0103077 | DOI | MR | Zbl
[32] Takemura K., “The Heun equation and the Calogero–Moser–Sutherland system. II. Perturbation and algebraic solution”, Electron. J. Differential Equations, no. 15 (2004), 30 pp., ages ; math.CA/0112179 | MR
[33] Takemura K., “The Heun equation and the Calogero–Moser–Sutherland system. III. The finite-gap property and the monodromy”, J. Nonlinear Math. Phys., 11 (2004), 21–46 ; math.CA/0201208 | DOI | MR | Zbl
[34] Takemura K., “The Heun equation and the Calogero–Moser–Sutherland system. IV. The Hermite–Krichever ansatz”, Comm. Math. Phys., 258 (2005), 367–403 ; math.CA/0406141 | DOI | MR | Zbl
[35] Unterkofler K., “On the solutions of Halphen's equation”, Differential Integral Equations, 14 (2001), 1025–1050 | MR | Zbl
[36] Whittaker E. T., Watson G. N., A course of modern analysis. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions, Reprint of the fourth (1927) edition, Cambridge University Press, Cambridge, 1996 | MR | Zbl
[37] Yuzbashyan E. A., Altshuler B. L., Kuznetsov V. B., Enolskii V. Z., “Solution for the dynamics of the BCS and central spin problems”, J. Phys. A: Math. Gen., 38 (2005), 7831–7849 ; cond-mat/0407501 | DOI | MR | Zbl