Real Hamiltonian Forms of Affine Toda Models Related to Exceptional Lie Algebras
Symmetry, integrability and geometry: methods and applications, Tome 2 (2006) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The construction of a family of real Hamiltonian forms (RHF) for the special class of affine $1+1$-dimensional Toda field theories (ATFT) is reported. Thus the method, proposed in [1] for systems with finite number of degrees of freedom is generalized to infinite-dimensional Hamiltonian systems. The construction method is illustrated on the explicit nontrivial example of RHF of ATFT related to the exceptional algebras $\bf E_6$ and $\bf E_7$. The involutions of the local integrals of motion are proved by means of the classical $R$-matrix approach.
Keywords: solitons; affine Toda field theories; Hamiltonian systems.
@article{SIGMA_2006_2_a21,
     author = {Vladimir S. Gerdjikov and Georgi G. Grahovski},
     title = {Real {Hamiltonian} {Forms} of {Affine} {Toda} {Models} {Related} to {Exceptional} {Lie} {Algebras}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2006},
     volume = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a21/}
}
TY  - JOUR
AU  - Vladimir S. Gerdjikov
AU  - Georgi G. Grahovski
TI  - Real Hamiltonian Forms of Affine Toda Models Related to Exceptional Lie Algebras
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2006
VL  - 2
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a21/
LA  - en
ID  - SIGMA_2006_2_a21
ER  - 
%0 Journal Article
%A Vladimir S. Gerdjikov
%A Georgi G. Grahovski
%T Real Hamiltonian Forms of Affine Toda Models Related to Exceptional Lie Algebras
%J Symmetry, integrability and geometry: methods and applications
%D 2006
%V 2
%U http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a21/
%G en
%F SIGMA_2006_2_a21
Vladimir S. Gerdjikov; Georgi G. Grahovski. Real Hamiltonian Forms of Affine Toda Models Related to Exceptional Lie Algebras. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a21/

[2] Gerdjikov V. S., Kyuldjiev A., Marmo G., Vilasi G., “Complexifications and real forms of Hamiltonian structures”, Eur. Phys. J. B Condens. Matter Phys., 29 (2002), 177–182 ; Gerdjikov V. S., Kyuldjiev A., Marmo G., Vilasi G., “Real Hamiltonian forms of Hamiltonian systems”, Eur. Phys. J. B Condens. Matter Phys., 38 (2004), 635–649 ; arXiv:nlin.SI/0310005 | MR | MR

[3] Mikhailov A. V., “The reduction problem and the inverse scattering problem”, Phys. D, 3 (1981), 73–117 | DOI

[4] Mikhailov A. V., Olshanetzky M. A., Perelomov A. M., “Two-dimensional generalized Toda lattice”, Comm. Math. Phys., 79 (1981), 473–490 | DOI | MR

[5] Olive D., Turok N., Underwood J. W. R., “Solitons and the energy-momentum tensor for affine Toda theory”, Nucl. Phys. B, 401 (1993), 663–697 ; Olive D., Turok N., Underwood J. W. R., “Affine Toda solitons and vertex operators”, Nucl. Phys. B, 409 (1993), 509–546 ; arXiv:hep-th/9305160 | DOI | MR | DOI | MR

[6] Evans J., “Complex Toda theories and twisted reality conditions”, Nucl. Phys. B, 390 (1993), 225–250 ; Evans J., Madsen J. O., “On the classification of real forms of non-Abelian Toda theories and $W$-algebras”, Nucl. Phys. B, 536 (1999), 657–703 ; Erratum: Nucl. Phys. B, 547 (1999), 665–666 ; ; Evans J., Madsen J. O., “Real form of non-Abelian Toda theories and their $W$-algebras”, Phys. Lett. B, 384 (1996), 131–139 ; arXiv:hep-th/9802201arXiv:hep-th/9605126 | DOI | MR | DOI | MR | DOI | MR | Zbl | DOI | MR

[7] Khastgir S. P., Sasaki R., “Instability of solitons in imaginary coupling affine Toda field theory”, Prog. Theor. Phys., 95 (1996), 485–501 ; ; Khastgir S. P., Sasaki R., “Non-canonical folding of Dynkin diagrams and reduction of affine Toda theories”, Prog. Theor. Phys., 95 (1996), 503–518 ; arXiv:hep-th/9507001arXiv:hep-th/9512158 | DOI | MR | DOI | MR

[8] Gerdjikov V. S., “Algebraic and analytic aspects of $N$-wave type equations”, Contemp. Math., 301 (2002), 35–68 | MR | Zbl

[9] Gerdjikov V. S., “Analytic and algebraic aspects of Toda field theories and their real Hamiltonian forms”, Bilinear Integrable Systems: from Classical to Quantum, Continuous to Discrete, NATO Science Series II: Mathematics, Physics and Chemistry, 201, eds. L. Faddeev, P. van Moerbeke and F. Lambert, Springer, Dordrecht, 2006, 77–83 | MR | Zbl

[10] Gerdjikov V. S., Grahovski G. G., “On reductions and real Hamiltonian forms of affine Toda field theories”, J. Nonlinear Math. Phys., 12, suppl. 2 (2005), 153–168 | DOI | MR | Zbl

[11] Bogoyavlensky O. I., “On perturbations of the periodic Toda lattice”, Comm. Math. Phys., 51 (1976), 201–209 | DOI | MR

[12] Damianou P. A., “Multiple Hamiltonian structure of the Bogoyavlensky–Toda lattices”, Rev. Math. Phys, 16 (2004), 175–241 | DOI | MR | Zbl

[13] Gerdjikov V. S., Evstatiev E. G., Ivanov R. I., “The complex Toda chains and the simple Lie algebras – solutions and large time asymptotics”, J. Phys. A: Math. Gen., 31 (1998), 8221–8232 ; ; Gerdjikov V. S., Evstatiev E. G., Ivanov R. I., “The complex Toda chains and the simple Lie algebras – solutions and large time asymptotics, II”, J. Phys. A: Math. Gen., 33 (2000), 975–1006 ; arXiv:solv-int/9712004arXiv:solv-int/9909020 | DOI | MR | Zbl | DOI | MR | Zbl

[14] Gerdjikov V. S., “$Z_N$-reductions and new integrable versions of derivative nonlinear Schrödinger equations”, Nonlinear Evolution Equations: Integrability and Spectral Methods, eds. A. P. Fordy, A. Degasperis and M. Lakshmanan, Manchester University Press, 1981, 367–379

[15] Gerdjikov V. S., Grahovski G. G., Ivanov R. I., Kostov N. A., “$N$-wave interactions related to simple Lie algebras. $\mathbf Z_2$-reductions and soliton solutions”, Inverse Problems, 17:4 (2001), 999–1015 ; arXiv:nlin.SI/0009034 | DOI | MR | Zbl

[16] Beals R., Coifman R. R., “Scattering and inverse scattering for first order systems”, Comm. Pure Appl. Math., 37 (1984), 39–90 | DOI | MR | Zbl

[17] Gerdjikov V. S., Yanovski A. B., “Completeness of the eigenfunctions for the Caudrey–Beals–Coifman system”, J. Math. Phys., 35 (1994), 3687–3725 | DOI | MR | Zbl

[18] Humphreys J. E., Reflection groups and Coxeter groups, Cambridge Univ. Press, 1992 | MR | Zbl

[19] Drinfel'd V., Sokolov V. V., “Lie Algebras and equations of Korteweg–de Vries type”, Sov. J. Math., 30 (1985), 1975–2036 | DOI

[20] Damianou P. A., “Multiple Hamiltonian structure for Toda-type systems”, J. Math. Phys., 35 (1994), 5511–5541 | DOI | MR | Zbl

[21] Helgasson S., Differential geometry, Lie groups and symmetric spaces, Academic Press, 1978 | MR

[22] Kac V. G., Infinite dimensional Lie algebras, Cambridge Univ. Press, 1990 | MR

[23] Sklyanin E. K., “Quantum version of the method of inverse scattering problem”, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 95, 1980, 55–128, in Russian ; Kulish P. P., “Quantum difference nonlinear Schrödinger equation”, Lett. Math. Phys., 5 (1981), 191–197 | MR | Zbl | DOI | MR | Zbl

[24] Gerdjikov V. S., Vilasi G., “The Calogero–Moser systems and the Weyl groups”, J. Group Theory Phys., 3 (1995), 13–20 | MR