The structure of semitopological monoids defined on compact connected 3-manifolds.
Semigroup forum, Tome 19 (1980), pp. 219-246.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : L-semitopological semigroups, M-semitopological semigroups, isotropy groups, one-dimensional torus groups, Czech homology, cohomology modules, semi-direct product, Betti numbers, Poincare duality
@article{SF_1980__19_134385,
     author = {W. Ruppert},
     title = {The structure of semitopological monoids defined on compact connected 3-manifolds.},
     journal = {Semigroup forum},
     pages = {219--246},
     publisher = {mathdoc},
     volume = {19},
     year = {1980},
     zbl = {0435.22003},
     url = {http://geodesic.mathdoc.fr/item/SF_1980__19_134385/}
}
TY  - JOUR
AU  - W. Ruppert
TI  - The structure of semitopological monoids defined on compact connected 3-manifolds.
JO  - Semigroup forum
PY  - 1980
SP  - 219
EP  - 246
VL  - 19
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SF_1980__19_134385/
ID  - SF_1980__19_134385
ER  - 
%0 Journal Article
%A W. Ruppert
%T The structure of semitopological monoids defined on compact connected 3-manifolds.
%J Semigroup forum
%D 1980
%P 219-246
%V 19
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SF_1980__19_134385/
%F SF_1980__19_134385
W. Ruppert. The structure of semitopological monoids defined on compact connected 3-manifolds.. Semigroup forum, Tome 19 (1980), pp. 219-246. http://geodesic.mathdoc.fr/item/SF_1980__19_134385/