@article{SEMR_2024_21_1_a4,
author = {B. Sh. Kulpeshov and S. V. Sudoplatov},
title = {Properties of concepts of freedom and independence for hypergraphs of models of quite o-minimal theories with few countable models},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {164--177},
year = {2024},
volume = {21},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a4/}
}
TY - JOUR AU - B. Sh. Kulpeshov AU - S. V. Sudoplatov TI - Properties of concepts of freedom and independence for hypergraphs of models of quite o-minimal theories with few countable models JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2024 SP - 164 EP - 177 VL - 21 IS - 1 UR - http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a4/ LA - ru ID - SEMR_2024_21_1_a4 ER -
%0 Journal Article %A B. Sh. Kulpeshov %A S. V. Sudoplatov %T Properties of concepts of freedom and independence for hypergraphs of models of quite o-minimal theories with few countable models %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2024 %P 164-177 %V 21 %N 1 %U http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a4/ %G ru %F SEMR_2024_21_1_a4
B. Sh. Kulpeshov; S. V. Sudoplatov. Properties of concepts of freedom and independence for hypergraphs of models of quite o-minimal theories with few countable models. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 164-177. http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a4/
[1] S.V. Sudoplatov, Classification of countable models of complete theories: monograph in two parts, NSTU Monographs, NSTU Publisher, Novosibirsk, 2018 https://www.researchgate.net/publication/325658602_Classification_of_countable_models_of_complete_theories_Part_1
[2] S.V. Sudoplatov, “On acyclic hypergraphs of minimal prime models”, Sib. Math. J., 42:6 (2001), 1170–1172 | DOI | MR | Zbl
[3] S.V. Sudoplatov, “Hypergraphs of prime models and distributions of countable models of small theories”, J. Math. Sciences, 169:5 (2010), 680–695 | DOI | MR
[4] S.V. Sudoplatov, “On the separability of elements and sets in hypergraphs of models of a theory”, Bull. Karaganda Univ. Mathematics, 2016:2(82) (2016), 113–120 https://mathematics-vestnik.ksu.kz/apart/2016-82-2/15.pdf
[5] B.Sh. Kulpeshov, S.V. Sudoplatov, “On relative separability in hypergraphs of models of theories”, Eurasian Math. J., 9:4 (2018), 68–78 | DOI | MR | Zbl
[6] B.Sh. Kulpeshov, S.V. Sudoplatov, “Vaught's conjecture for quite o-minimal theories”, Ann. Pure Appl. Logic, 168:1 (2017), 129–149 | DOI | MR | Zbl
[7] B.Sh. Kulpeshov, S.V. Sudoplatov, “Distributions of countable models of quite o-minimal Ehrenfeucht theories”, Eurasian Math. J., 11:3 (2020), 66–78 | DOI | MR | Zbl
[8] B.S. Baizhanov, “Expansion of a model of a weakly o-minimal theory by a family of unary predicates”, J. Symb. Log., 66:3 (2001), 1382–1414 | DOI | MR | Zbl
[9] B.Sh. Kulpeshov, “The convexity rank and orthogonality in weakly o-minimal theories”, Izv. Minist. Obraz. Nauki Resp. Kaz. Nats. Akad. Nauk Resp. Kaz. Ser. Fiz.-Mat., 227:1 (2003), 26–31 | MR
[10] A. Alibek, B.S. Baizhanov, “Examples of countable models of a weakly o-minimal theory”, Int. J. Math. Phys., 3:2 (2012), 1–8
[11] B.S. Baizhanov, “One-types in weakly o-minimal theories”, Proceedings of Informatics and Control Problems Institute, Almaty, 1996, 75–88
[12] B.S. Baizhanov, B.Sh. Kulpeshov, “On behaviour of $2$-formulas in weakly o-minimal theories”, Mathematical logic in Asia, Proceedings of the 9th Asian logic conference (Novosibirsk, Russia, August 16-19, 2005), eds. Goncharov, S.S. et al., World Scientific, Hackensack, 2006, 31–40 | DOI | MR | Zbl
[13] B.Sh. Kulpeshov, “Weakly o-minimal structures and some of their properties”, J. Symb. Log., 63:4 (1998), 1511–1528 | DOI | MR | Zbl
[14] B.Sh. Kulpeshov, “A criterion for binarity of almost $\omega$-categorical weakly o-minimal theories”, Sib. Math. J., 62:6 (2021), 1063–1075 | DOI | MR | Zbl