Optimal gyroscopic stabilization of vibrational system: algebraic approach
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 70-80 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper deals with LTI vibrational systems with positive definite stiffness matrix $K$ and symmetric damping matrix $D$. Gyroscopic stabilization means the existence of gyroscopic forces with a skew-symmetric matrix $G$, such that a closed loop system with damping matrix $D+G$ is asymptotically stable. The feature of characteristic polynomial in the case predetermines such stabilization as a low order control design. Assuming the necessary condition of gyroscopic stabilization is fulfilled, we pose the problem of achieving relative stability maximum using a stabilizer $G$. The stability maximum value is determined by a matrix $D$ trace, but its reachability depends on the coincidence of all pole real parts with the corresponding minimal value, i.e. equality of characteristic and root polynomials. We illustrate a root polynomial technique application to optimal gyroscopic stabilizer design by examples of dimension 3–5.
Keywords: vibrational system, gyroscopic stabilizer, low order control, rightmost poles, relative stability, root polynomial.
@article{SEMR_2024_21_1_a23,
     author = {A. V. Chekhonadskikh},
     title = {Optimal gyroscopic stabilization of vibrational system: algebraic approach},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {70--80},
     year = {2024},
     volume = {21},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a23/}
}
TY  - JOUR
AU  - A. V. Chekhonadskikh
TI  - Optimal gyroscopic stabilization of vibrational system: algebraic approach
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 70
EP  - 80
VL  - 21
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a23/
LA  - en
ID  - SEMR_2024_21_1_a23
ER  - 
%0 Journal Article
%A A. V. Chekhonadskikh
%T Optimal gyroscopic stabilization of vibrational system: algebraic approach
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 70-80
%V 21
%N 1
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a23/
%G en
%F SEMR_2024_21_1_a23
A. V. Chekhonadskikh. Optimal gyroscopic stabilization of vibrational system: algebraic approach. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 70-80. http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a23/

[1] N.G. Chetaev, Stability of motion, Izdat. Akad. Nauk SSSR, M., 1962 | MR

[2] A.Yu. Aleksandrov, A.A. Kosov, “On stability of gyroscopic systems”, Vestnik St.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2013:2 (2013), 3–13

[3] V.I. Kalenova, V.M. Morozov, “The effect of dissipative and gyroscopic forces on the stability of a class of linear time-varying systems”, J. Appl. Math. Mech., 77:3 (2013), 278–286 | DOI | MR | Zbl

[4] V.V. Kozlov, “On the stabilization of unstable equilibria by time-periodic gyroscopic forces”, Dokl. Phys., 54:12 (2009), 561–562 | DOI | MR

[5] T. Damm, J. Homeyer, “Gyroscopic stabilization of 2nd-order-systems with indefinite damping”, Proc. Appl. Math. Mech., 11:1 (2011), 811–812 | DOI

[6] K. Popp, M. Rudolph, “Avoidance of stick-slip motion by vibration control”, Proc. Appl. Math. Mech., 3 (2003), 120–121 | DOI | Zbl

[7] O.N. Kirillov, “Subcritical flutter in the acoustics of friction”, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., 464:2097 (2008), 2321–2339 | MR | Zbl

[8] W. Kliem, C. Pommer, “Indefinite damping in mechanical systems and gyroscopic stabilization”, Z. Angew. Math. Phys., 60:4 (2009), 785–795 | DOI | MR | Zbl

[9] A.V. Chekhonadskikh, A.A. Voevoda, “Algebraic design method of low order control systems”, Proceedings of the International Siberian conference on control and communications, SIBCON-2015 (Omsk, 21–23 May, 2015), IEEE, 2015, 268–272

[10] A.V. Chekhonadskikh, “Root coordinates in the design of SISO control systems”, Optoelectron. Instrument. Proc., 51:5 (2015), 485–495 | DOI

[11] A.V. Chekhonadskikh, “Some classical number sequences in control system design”, Sib. Èlectron. Mat. Izv., 14 (2017), 620–628 http://semr.math.nsc.ru/v14/p620-628.pdf | MR | Zbl

[12] A.V. Chekhonadskikh, “Optimal'nyi giroskopicheskii stabilizator mnogomernoi vibratsionnoi sistemy”, Sistemy analiza i obrabotki dannykh, 86:2 (2022), 81–94 https://cyberleninka.ru/article/n/optimalnyy-giroskopicheskiy-stabilizator-mnogomernoy-vibratsionnoy-sistemy