Optimal gyroscopic stabilization of vibrational system: algebraic approach
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 70-80
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper deals with LTI vibrational systems with positive definite stiffness matrix $K$ and symmetric damping matrix $D$. Gyroscopic stabilization means the existence of gyroscopic forces with a skew-symmetric matrix $G$, such that a closed loop system with damping matrix $D+G$ is asymptotically stable. The feature of characteristic polynomial in the case predetermines such stabilization as a low order control design. Assuming the necessary condition of gyroscopic stabilization is fulfilled, we pose the problem of achieving relative stability maximum using a stabilizer $G$. The stability maximum value is determined by a matrix $D$ trace, but its reachability depends on the coincidence of all pole real parts with the corresponding minimal value, i.e. equality of characteristic and root polynomials. We illustrate a root polynomial technique application to optimal gyroscopic stabilizer design by examples of dimension 3–5.
Keywords:
vibrational system, gyroscopic stabilizer, low order control, rightmost poles, relative stability, root polynomial.
@article{SEMR_2024_21_1_a23,
author = {A. V. Chekhonadskikh},
title = {Optimal gyroscopic stabilization of vibrational system: algebraic approach},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {70--80},
publisher = {mathdoc},
volume = {21},
number = {1},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a23/}
}
TY - JOUR AU - A. V. Chekhonadskikh TI - Optimal gyroscopic stabilization of vibrational system: algebraic approach JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2024 SP - 70 EP - 80 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a23/ LA - en ID - SEMR_2024_21_1_a23 ER -
A. V. Chekhonadskikh. Optimal gyroscopic stabilization of vibrational system: algebraic approach. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 70-80. http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a23/