Describing edges in normal plane maps having no adjacent $3$-faces
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 495-500.

Voir la notice de l'article provenant de la source Math-Net.Ru

The weight $w(e)$ of an edge $e$ in a normal plane map (NPM) is the degree-sum of its end-vertices. An edge $e=uv$ is an $(i,j)$-edge if $d(u)\le i$ and $d(v)\le j$. In 1940, Lebesgue proved that every NPM has a $(3,11)$-edge, or $(4,7)$-edge, or $(5,6)$-edge, where 7 and 6 are best possible. In 1955, Kotzig proved that every $3$-polytope has an edge $e$ with $w(e)\le13$, which bound is sharp. Borodin (1987), answering Erdős' question, proved that every NPM has such an edge. Moreover, Borodin (1991) refined this by proving that there is either a $(3,10)$-edge, or $(4,7)$-edge, or $(5,6)$-edge. Given an NPM, we observe some upper bounds on the minimum weight of all its edges, denoted by $w$, of those incident with a $3$-face, $w^*$, and those incident with two $3$-faces, $w^{**}$. In particular, Borodin (1996) proved that if $w^{**}=\infty$, that is if an NPM has no edges incident with two $3$-faces, then either $w^*\le9$ or $w\le8$, where both bounds are sharp. The purpose of our note is to refine this result by proving that in fact $w^{**}=\infty$ implies either a $(3,6)$- or $(4,4)$-edge incident with a $3$-face, or a $(3,5)$-edge, which description is tight.
Keywords: planar graph, plane map, structure properties, $3$-polytope, weight.
@article{SEMR_2024_21_1_a21,
     author = {O. V. Borodin and A. O. Ivanova},
     title = {Describing edges in normal plane maps having no adjacent $3$-faces},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {495--500},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a21/}
}
TY  - JOUR
AU  - O. V. Borodin
AU  - A. O. Ivanova
TI  - Describing edges in normal plane maps having no adjacent $3$-faces
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 495
EP  - 500
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a21/
LA  - en
ID  - SEMR_2024_21_1_a21
ER  - 
%0 Journal Article
%A O. V. Borodin
%A A. O. Ivanova
%T Describing edges in normal plane maps having no adjacent $3$-faces
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 495-500
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a21/
%G en
%F SEMR_2024_21_1_a21
O. V. Borodin; A. O. Ivanova. Describing edges in normal plane maps having no adjacent $3$-faces. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 495-500. http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a21/