On cubic graphs having the maximum coalition number
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 363-369
Voir la notice de l'article provenant de la source Math-Net.Ru
A coalition in a graph $G$ with a vertex set $V$ consists of two disjoint sets $V_1, V_2\subset V$, such that neither $V_1$ nor $V_2$ is a dominating set, but the union $V_1\cup V_2$ is a dominating set in $G$. A partition of graph vertices is called a coalition partition $\mathcal{P}$ if every non-dominating set of $\mathcal{P}$ is a member of a coalition, and every dominating set is a single-vertex set. The coalition number $C(G)$ of a graph $G$ is the maximum cardinality of its coalition partitions. It is known that for cubic graphs $C(G) \le 9$. The existence of cubic graphs with the maximum coalition number is an unsolved problem. In this paper, an infinite family of cubic graphs satisfying $C(G)=9$ is constructed.
Keywords:
dominating set, coalition number, cubic graph.
@article{SEMR_2024_21_1_a19,
author = {A. A. Dobrynin and H. Golmohammadi},
title = {On cubic graphs having the maximum coalition number},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {363--369},
publisher = {mathdoc},
volume = {21},
number = {1},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a19/}
}
TY - JOUR AU - A. A. Dobrynin AU - H. Golmohammadi TI - On cubic graphs having the maximum coalition number JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2024 SP - 363 EP - 369 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a19/ LA - en ID - SEMR_2024_21_1_a19 ER -
A. A. Dobrynin; H. Golmohammadi. On cubic graphs having the maximum coalition number. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 363-369. http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a19/