Finite groups with modular and submodular subgroups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 501-512
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A subgroup $H$ of a group $G$ is modular in $G$ if $H$ is a modular element of subgroup lattice of $G$, and is submodular in $G$ if there is a subgroup chain $H=H_0\leq\ldots\leq H_i\leq H_{i+1}\leq \ldots \leq H_n=G$ such that $H_i$ is modular in $H_{i+1}$ for every $i$. We prove that if every Sylow subgroup of a group $G$ is modular in $G$, then $G$ is supersolvable and $G/F(G)$ is a cyclic group of square-free order. We also obtain new signs of supersolvabilty of groups with some submodular subgroups (normalizers of Sylow subgroups, Hall subgroups, maximal subgroups). For a such group $G$, $G/\Phi(G)$ is a supersolvable group of square-free exponent. Moreover, we describe the structure of groups with modular (submodular) or self-normalizing primary subgroups.
Keywords: finite group, modular subgroup, submodular subgroup, self-normalizing subgroup.
@article{SEMR_2024_21_1_a14,
     author = {I. L. Sokhor},
     title = {Finite groups with modular and submodular subgroups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {501--512},
     year = {2024},
     volume = {21},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a14/}
}
TY  - JOUR
AU  - I. L. Sokhor
TI  - Finite groups with modular and submodular subgroups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 501
EP  - 512
VL  - 21
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a14/
LA  - en
ID  - SEMR_2024_21_1_a14
ER  - 
%0 Journal Article
%A I. L. Sokhor
%T Finite groups with modular and submodular subgroups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 501-512
%V 21
%N 1
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a14/
%G en
%F SEMR_2024_21_1_a14
I. L. Sokhor. Finite groups with modular and submodular subgroups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 501-512. http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a14/

[1] A. Liu, M. Chen, I.N. Safonova, A.N. Skiba, “Finite groups with modular $\sigma$-subnormal subgroups”, J. Group Theory, 27:3 (2024), 595–610 | DOI | MR | Zbl

[2] R. Schmidt, Subgroup lattices of groups, De Gruyter, Berlin, 1994 | MR | Zbl

[3] A.M. Liu, W. Guo, I.N. Safonova, A.N. Skiba, “Finite groups in which modularity is a transitive relation”, Arch. Math., 121:2 (2023), 111–121 | DOI | MR | Zbl

[4] I. Zimmermann, “Submodular subgroups in finite groups”, Math. Z., 202:4 (1989), 545–557 | DOI | MR | Zbl

[5] V.A. Vasil'ev, “Finite groups with submodular Sylow subgroups”, Sib. Math. J., 56:6 (2015), 1019–1027 | DOI | MR | Zbl

[6] V.S. Monakhov, I.L. Sokhor, “Finite groups with submodular primary subgroups”, Arch. Math., 121:1 (2023), 1–10 | DOI | MR | Zbl

[7] V.N. Knyagina, V.S. Monakhov, “Finite groups with nilpotent and Hall subgroups”, Discrete Math. Appl., 23:2 (2013), 175–182 | DOI | MR | Zbl

[8] V.S. Monakhov, “Finite groups with abnormal and $\mathfrak{U}$-subnormal subgroups”, Sib. Math. J., 57:2 (2016), 352–363 | DOI | MR | Zbl

[9] X. Yi, S. Jiang, S.F. Kamornikov, “Finite groups with given non-nilpotent maximal subgroups of prime index”, J. Algebra Appl., 18:5 (2019), 1950087 | DOI | MR | Zbl

[10] V.S. Monakhov, I.L. Sokhor, “Finite groups with seminormal or abnormal Sylow subgroups”, Int. J. Group Theory, 9:3 (2020), 139–142 | DOI | MR | Zbl

[11] A. Ballester-Bolinches, L.M. Ezquerro, Classes of finite groups, Springer, Dordrecht, 2006 | MR | Zbl

[12] A system for computational discrete algebra GAP 4.12.2, https://www.gap-system.org

[13] E.P. Vdovin, “Carter subgroups of finite groups”, Sib. Adv. Math., 19:1 (2009), 24–74 | DOI | MR | Zbl

[14] B. Huppert, Endliche Gruppen, v. I, Springer, Berlin–Heidelberg–New York, 1967 | MR | Zbl