Finite groups with modular and submodular subgroups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 501-512.

Voir la notice de l'article provenant de la source Math-Net.Ru

A subgroup $H$ of a group $G$ is modular in $G$ if $H$ is a modular element of subgroup lattice of $G$, and is submodular in $G$ if there is a subgroup chain $H=H_0\leq\ldots\leq H_i\leq H_{i+1}\leq \ldots \leq H_n=G$ such that $H_i$ is modular in $H_{i+1}$ for every $i$. We prove that if every Sylow subgroup of a group $G$ is modular in $G$, then $G$ is supersolvable and $G/F(G)$ is a cyclic group of square-free order. We also obtain new signs of supersolvabilty of groups with some submodular subgroups (normalizers of Sylow subgroups, Hall subgroups, maximal subgroups). For a such group $G$, $G/\Phi(G)$ is a supersolvable group of square-free exponent. Moreover, we describe the structure of groups with modular (submodular) or self-normalizing primary subgroups.
Keywords: finite group, modular subgroup, submodular subgroup, self-normalizing subgroup.
@article{SEMR_2024_21_1_a14,
     author = {I. L. Sokhor},
     title = {Finite groups with modular and submodular subgroups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {501--512},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a14/}
}
TY  - JOUR
AU  - I. L. Sokhor
TI  - Finite groups with modular and submodular subgroups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 501
EP  - 512
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a14/
LA  - en
ID  - SEMR_2024_21_1_a14
ER  - 
%0 Journal Article
%A I. L. Sokhor
%T Finite groups with modular and submodular subgroups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 501-512
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a14/
%G en
%F SEMR_2024_21_1_a14
I. L. Sokhor. Finite groups with modular and submodular subgroups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 501-512. http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a14/