Constant expansion of theories and the number of countable models
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1037-1051
Voir la notice de l'article provenant de la source Math-Net.Ru
The present paper is dedicated to the method of constant expansion of a complete theory for studying its number of countable models. This paper aims to rehabilitate the method of constant expansion by demonstrating its continued relevance and its potential for use in counting the number of countable models. The main result reveals that the question of reducing the number of countable models from the continuum to a countable number by a constant expansion of a theory remains unanswered, contrary to previous beliefs.
Keywords:
small theory, the number of countable models, expansion by constants, non-orthogonality of types, ordered structures.
@article{SEMR_2023_20_2_a9,
author = {B. S. Baizhanov and O. A. Umbetbayev},
title = {Constant expansion of theories and the number of countable models},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1037--1051},
publisher = {mathdoc},
volume = {20},
number = {2},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a9/}
}
TY - JOUR AU - B. S. Baizhanov AU - O. A. Umbetbayev TI - Constant expansion of theories and the number of countable models JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2023 SP - 1037 EP - 1051 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a9/ LA - en ID - SEMR_2023_20_2_a9 ER -
B. S. Baizhanov; O. A. Umbetbayev. Constant expansion of theories and the number of countable models. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1037-1051. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a9/