Constant expansion of theories and the number of countable models
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1037-1051

Voir la notice de l'article provenant de la source Math-Net.Ru

The present paper is dedicated to the method of constant expansion of a complete theory for studying its number of countable models. This paper aims to rehabilitate the method of constant expansion by demonstrating its continued relevance and its potential for use in counting the number of countable models. The main result reveals that the question of reducing the number of countable models from the continuum to a countable number by a constant expansion of a theory remains unanswered, contrary to previous beliefs.
Keywords: small theory, the number of countable models, expansion by constants, non-orthogonality of types, ordered structures.
@article{SEMR_2023_20_2_a9,
     author = {B. S. Baizhanov and O. A. Umbetbayev},
     title = {Constant expansion of theories and the number of countable models},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1037--1051},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a9/}
}
TY  - JOUR
AU  - B. S. Baizhanov
AU  - O. A. Umbetbayev
TI  - Constant expansion of theories and the number of countable models
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 1037
EP  - 1051
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a9/
LA  - en
ID  - SEMR_2023_20_2_a9
ER  - 
%0 Journal Article
%A B. S. Baizhanov
%A O. A. Umbetbayev
%T Constant expansion of theories and the number of countable models
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 1037-1051
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a9/
%G en
%F SEMR_2023_20_2_a9
B. S. Baizhanov; O. A. Umbetbayev. Constant expansion of theories and the number of countable models. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1037-1051. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a9/