Constant expansion of theories and the number of countable models
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1037-1051.

Voir la notice de l'article provenant de la source Math-Net.Ru

The present paper is dedicated to the method of constant expansion of a complete theory for studying its number of countable models. This paper aims to rehabilitate the method of constant expansion by demonstrating its continued relevance and its potential for use in counting the number of countable models. The main result reveals that the question of reducing the number of countable models from the continuum to a countable number by a constant expansion of a theory remains unanswered, contrary to previous beliefs.
Keywords: small theory, the number of countable models, expansion by constants, non-orthogonality of types, ordered structures.
@article{SEMR_2023_20_2_a9,
     author = {B. S. Baizhanov and O. A. Umbetbayev},
     title = {Constant expansion of theories and the number of countable models},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1037--1051},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a9/}
}
TY  - JOUR
AU  - B. S. Baizhanov
AU  - O. A. Umbetbayev
TI  - Constant expansion of theories and the number of countable models
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 1037
EP  - 1051
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a9/
LA  - en
ID  - SEMR_2023_20_2_a9
ER  - 
%0 Journal Article
%A B. S. Baizhanov
%A O. A. Umbetbayev
%T Constant expansion of theories and the number of countable models
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 1037-1051
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a9/
%G en
%F SEMR_2023_20_2_a9
B. S. Baizhanov; O. A. Umbetbayev. Constant expansion of theories and the number of countable models. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1037-1051. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a9/

[1] R.E. Woodrow, “Theories with a finite number of countable models”, J. Symb. Log., 43:3 (1978), 442–445 | DOI | MR | Zbl

[2] M.G. Peretyatkin, “Theories with three countable models”, Algebra Logic, 19 (1981), 139–147 | DOI | MR | Zbl

[3] B. Omarov, “Nonessential extensions of complete theories”, Algebra Logic, 22:5 (1983), 390–397 | DOI | MR | Zbl

[4] B.S. Baizhanov, B.Sh. Kulpeshov, T.S. Zambarnaya, “A.D. Taimanov and model theory in Kazakhstan”, Sib. Èlectron. Mat. Izv., 17 (2020), A1–A58 | DOI | MR | Zbl

[5] B.S. Baizhanov, V.V. Verbovskiy, “O-stable theories”, Algebra Logic, 50:3 (2011), 211–225 | DOI | MR | Zbl

[6] V.V. Verbovskiy, A.B. Dauletiyarova, “Piecewise monotonicity for unary functions in o-stable groups”, Algebra Logic, 60:1 (2021), 15–25 | DOI | MR | Zbl

[7] B.S. Baizhanov, S.S. Baizhanov, N.E. Sailaubay, O.A. Umbetbayev, T.S. Zambarnaya, “Essential and inessential expansions: model completeness and number of countable models”, Mat. Zh., 17:2 (2017), 43–52 https://math.kz/media/journal/journal2018-09-1488164.pdf | Zbl

[8] B.S. Baizhanov, S.V. Sudoplatov, V.V. Verbovskiy, “Conditions for non-symmetric relations of semi-isolation”, Sib. Èlektron. Mat. Izv., 9 (2012), 161–184 | MR | Zbl

[9] S. Shelah, Classification theory and the number of non-isomorphic models, North-Holland, Amsterdam etc, 1990 | MR | Zbl

[10] S.V. Sudoplatov, “Complete theories with finitely many countable models. I”, Algebra Logic, 43:1 (2004), 62–69 | DOI | MR | Zbl

[11] S.V. Sudoplatov, Classification of countable models of complete theories, monograph in two parts, NSTU Monographs, NSTU Publisher, Novosibirsk, 2018

[12] D. Marker, Model theory: An introduction, Springer-Verlag, New York, 2002 | DOI | MR | Zbl