One corollary of description of finite groups without elements of order $6$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 854-858.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group. The set of all prime divisors of the order of $G$ is denoted by $\pi(G)$. The Gruenberg-Kegel graph (the prime graph) $\Gamma(G)$ of $G$ is defined as the graph with the vertex set $\pi(G)$ in which two different vertices $p$ and $q$ are adjacent if and only if $G$ contains an element of order $pq$. If the order of $G$ is even, then $\pi_1(G)$ denotes the connected component of $\Gamma(G)$ containing $2$. It is actual the problem of describing finite groups with disconnected Gruenberg-Kegel graphs. In the present article, all finite non-solvable groups $G$ with $3 \in \pi(G)\setminus \pi_1(G)$ are determined.
Keywords: finite group, Gruenberg-Kegel graph.
Mots-clés : non-solvable group
@article{SEMR_2023_20_2_a8,
     author = {A. S. Kondrat'ev and M. S. Nirova},
     title = {One corollary of description of finite groups without elements of order $6$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {854--858},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a8/}
}
TY  - JOUR
AU  - A. S. Kondrat'ev
AU  - M. S. Nirova
TI  - One corollary of description of finite groups without elements of order $6$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 854
EP  - 858
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a8/
LA  - ru
ID  - SEMR_2023_20_2_a8
ER  - 
%0 Journal Article
%A A. S. Kondrat'ev
%A M. S. Nirova
%T One corollary of description of finite groups without elements of order $6$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 854-858
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a8/
%G ru
%F SEMR_2023_20_2_a8
A. S. Kondrat'ev; M. S. Nirova. One corollary of description of finite groups without elements of order $6$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 854-858. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a8/

[1] Z. Arad, W. Herfort, “Classification of finite groups with a $CC$-subgroup”, Commun. Algebra, 32:6 (2004), 2087–2098 | DOI | MR | Zbl

[2] J.N. Bray, D.F. Holt, C.M. Roney-Dougal, The maximal subgroups of low-dimensional finite classical groups, Cambrige University Press, Cambridge, 2013 | MR | Zbl

[3] J.H. Conway, R.T. Curtis., S.P. Norton, R.A. Parker, R.A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985 | MR | Zbl

[4] D. Gorenstein, Finite groups, Harper Row, New York-Evanston-London, 1968 | MR | Zbl

[5] D. Gorenstein, R. Lyons, R. Solomon, “Almost simple K-groups”, The classification of the finite simple groups, Chapter A, v. I, Mathematical Surveys and Monographs, 40.3, Amer. Math. Soc., Providence, 1998 | MR | Zbl

[6] G. Higman, Odd characterizations of finite simple groups, lecture notes, University of Michigan, Michigan, 1968

[7] N. Iiyori, H. Yamaki, “Prime graph components of the simple groups of Lie type over the fields of even characteristic”, J. Algebra, 155:2 (1993), 335–343 ; Corrigenda J. Algebra, 181:2 (1996), 659 | DOI | MR | Zbl | DOI | MR | Zbl

[8] A.S. Kondrat'ev, “Prime graph components of finite simple groups”, Math. USSR Sb., 67:1 (1990), 235–247 | DOI | MR | Zbl

[9] A.S. Kondrat'ev, “Finite groups with given properties of their prime graphs”, Algebra Logic, 55:1 (2016), 77–82 | DOI | MR | Zbl

[10] A.S. Kondrat'ev, I.V. Khramtsov, “The complete reducibility of some $GF(2)A_7$-modules”, Proc. Steklov Inst. Math., 283, Suppl. 1 (2013), S86–S90 | MR | Zbl

[11] A.S. Kondrat'ev, N.A. Minigulov, “Finite groups without elements of order six”, Math. Notes, 104:5 (2018), 696–701 | DOI | MR | Zbl

[12] M.S. Lucido, “Prime graph components of finite almost simple groups”, Rend. Sem. Mat. Univ. Padova, 102 (1999), 1–22 ; Addendum to: “Prime graph components of finite almost simple groups”, Rend. Sem. Mat. Univ. Padova, 107 (2002), 189–190 | MR | Zbl | MR | Zbl

[13] W.B. Stewart, “Groups having strongly self-centralizing $3$-centralizers”, Proc. Lond. Math. Soc., III. Ser., 26:4 (1973), 653–680 | DOI | MR | Zbl

[14] J.S. Williams, “Prime graph components of finite groups”, J. Algebra, 69:2 (1981), 487–513 | DOI | MR | Zbl