Stability condition and Riesz bounds for exponential splines
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1430-1442
Voir la notice de l'article provenant de la source Math-Net.Ru
Stability of the family of integer translations of exponential spline $U_{m,p}$ for arbitrary $m,p$ is proven; Riesz bounds are determined. The method presented in the paper allows to calculate Riesz bounds for the convolution of a B-spline of an arbitrary order and a function with an appropriated Fourier transform.
Keywords:
E-spline, Riesz basis, Riesz bounds, functional series.
@article{SEMR_2023_20_2_a67,
author = {E. V. Mishchenko},
title = {Stability condition and {Riesz} bounds for exponential splines},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1430--1442},
publisher = {mathdoc},
volume = {20},
number = {2},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a67/}
}
TY - JOUR AU - E. V. Mishchenko TI - Stability condition and Riesz bounds for exponential splines JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2023 SP - 1430 EP - 1442 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a67/ LA - ru ID - SEMR_2023_20_2_a67 ER -
E. V. Mishchenko. Stability condition and Riesz bounds for exponential splines. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1430-1442. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a67/