Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2023_20_2_a67, author = {E. V. Mishchenko}, title = {Stability condition and {Riesz} bounds for exponential splines}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1430--1442}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a67/} }
TY - JOUR AU - E. V. Mishchenko TI - Stability condition and Riesz bounds for exponential splines JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2023 SP - 1430 EP - 1442 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a67/ LA - ru ID - SEMR_2023_20_2_a67 ER -
E. V. Mishchenko. Stability condition and Riesz bounds for exponential splines. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1430-1442. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a67/
[1] I.J. Schoenberg, “Contributions to the problem of approximation of equidistant data by analytic functions. Part A: On the problem of smoothing or graduation. A first class of analytic approximation formulae”, Q. Appl. Math., 4 (1946), 45–99 | DOI | MR | Zbl
[2] I.J. Schoenberg, “Contributions to the problem of approximation of equidistant data by analytic functions. Part B: On the problem of osculatory interpolation. A second class of analytic approximation formulae”, Q. Appl. Math., 4 (1946), 112–141 | DOI | MR | Zbl
[3] I.J. Schoenberg, “On trigonometric spline interpolation”, J. Math. Mech., 13:5 (1964), 795–825 | MR | Zbl
[4] L.L. Schumaker, Spline functions: basic theory, Wiley-Interscience, New York etc, 1981 | MR | Zbl
[5] H.G. ter Morsche, Interpolation and extremal properties of L-splines functions, Dissertation, Technishe Hogeschool Eindhoven, Eindhoven, 1982 | MR | Zbl
[6] L.L. Schumaker, “On hyperbolic splines”, J. Approxim. Theory, 38:2 (1983), 144–166 | DOI | MR | Zbl
[7] A.Y. Bezhaev, V.A. Vasilenko, “Variational spline theory”, Bull. Novosib. Comput. Cent., Ser. Numer. Anal., 1993, no. 3, Novosibirsk, 1993 | MR | Zbl
[8] M.A. Unser, “Splines: a perfect fit for medical imaging”, Medical Imaging 2002: Image Processing (9 May 2002), Proc. SPIE, 4684, 2002 | DOI
[9] O.E. Hepson, A. Korkmaz, I. Dag, “Exponential B-spline collocation solutions to the Gardner equation”, Int. J. Comput. Math., 97:4 (2020), 837–850 | DOI | MR | Zbl
[10] Ch.K. Chui, An introduction to wavelets, Academic Press, Boston, 1992 | MR | Zbl
[11] E.V. Mishchenko, “Determination of Riesz bounds for the spline basis with the help of trigonometric polynomials”, Sib. Math. J., 51:4 (2010), 660–666 | DOI | MR | Zbl