Stability condition and Riesz bounds for exponential splines
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1430-1442

Voir la notice de l'article provenant de la source Math-Net.Ru

Stability of the family of integer translations of exponential spline $U_{m,p}$ for arbitrary $m,p$ is proven; Riesz bounds are determined. The method presented in the paper allows to calculate Riesz bounds for the convolution of a B-spline of an arbitrary order and a function with an appropriated Fourier transform.
Keywords: E-spline, Riesz basis, Riesz bounds, functional series.
@article{SEMR_2023_20_2_a67,
     author = {E. V. Mishchenko},
     title = {Stability condition and {Riesz} bounds for exponential splines},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1430--1442},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a67/}
}
TY  - JOUR
AU  - E. V. Mishchenko
TI  - Stability condition and Riesz bounds for exponential splines
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 1430
EP  - 1442
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a67/
LA  - ru
ID  - SEMR_2023_20_2_a67
ER  - 
%0 Journal Article
%A E. V. Mishchenko
%T Stability condition and Riesz bounds for exponential splines
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 1430-1442
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a67/
%G ru
%F SEMR_2023_20_2_a67
E. V. Mishchenko. Stability condition and Riesz bounds for exponential splines. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1430-1442. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a67/