Gaussian semigroups of operators in the space of Borel functions on a separable Hilbert space
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1320-1340

Voir la notice de l'article provenant de la source Math-Net.Ru

The concept of a Gaussian family of Borel measures on a separable Hilbert space is introduced in the paper. Necessary and sufficient conditions are found under which a Gaussian family of measures generates a semigroup of operators on the space of complex bounded Borel functions. These conditions are expressed in the form of a system of functional equations and initial conditions for operator-valued functions on the real semi-axis. A system of differential equations is derived from the system of functional equations and it is proved that the Cauchy problem has a unique solution for it. Several examples of Gaussian semigroups of operators are given.
Keywords: gaussian semigroup of operators, Gaussian family of Borel measures, operator Riccati differential equation, determinant of infinite order, system of functional equations.
@article{SEMR_2023_20_2_a66,
     author = {O. E. Galkin and S. Yu. Galkina and I. Yu. Yastrebova},
     title = {Gaussian semigroups of operators in the space of {Borel} functions on a separable {Hilbert} space},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1320--1340},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a66/}
}
TY  - JOUR
AU  - O. E. Galkin
AU  - S. Yu. Galkina
AU  - I. Yu. Yastrebova
TI  - Gaussian semigroups of operators in the space of Borel functions on a separable Hilbert space
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 1320
EP  - 1340
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a66/
LA  - ru
ID  - SEMR_2023_20_2_a66
ER  - 
%0 Journal Article
%A O. E. Galkin
%A S. Yu. Galkina
%A I. Yu. Yastrebova
%T Gaussian semigroups of operators in the space of Borel functions on a separable Hilbert space
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 1320-1340
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a66/
%G ru
%F SEMR_2023_20_2_a66
O. E. Galkin; S. Yu. Galkina; I. Yu. Yastrebova. Gaussian semigroups of operators in the space of Borel functions on a separable Hilbert space. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1320-1340. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a66/