Gaussian semigroups of operators in the space of Borel functions on a separable Hilbert space
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1320-1340.

Voir la notice de l'article provenant de la source Math-Net.Ru

The concept of a Gaussian family of Borel measures on a separable Hilbert space is introduced in the paper. Necessary and sufficient conditions are found under which a Gaussian family of measures generates a semigroup of operators on the space of complex bounded Borel functions. These conditions are expressed in the form of a system of functional equations and initial conditions for operator-valued functions on the real semi-axis. A system of differential equations is derived from the system of functional equations and it is proved that the Cauchy problem has a unique solution for it. Several examples of Gaussian semigroups of operators are given.
Keywords: gaussian semigroup of operators, Gaussian family of Borel measures, operator Riccati differential equation, determinant of infinite order, system of functional equations.
@article{SEMR_2023_20_2_a66,
     author = {O. E. Galkin and S. Yu. Galkina and I. Yu. Yastrebova},
     title = {Gaussian semigroups of operators in the space of {Borel} functions on a separable {Hilbert} space},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1320--1340},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a66/}
}
TY  - JOUR
AU  - O. E. Galkin
AU  - S. Yu. Galkina
AU  - I. Yu. Yastrebova
TI  - Gaussian semigroups of operators in the space of Borel functions on a separable Hilbert space
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 1320
EP  - 1340
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a66/
LA  - ru
ID  - SEMR_2023_20_2_a66
ER  - 
%0 Journal Article
%A O. E. Galkin
%A S. Yu. Galkina
%A I. Yu. Yastrebova
%T Gaussian semigroups of operators in the space of Borel functions on a separable Hilbert space
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 1320-1340
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a66/
%G ru
%F SEMR_2023_20_2_a66
O. E. Galkin; S. Yu. Galkina; I. Yu. Yastrebova. Gaussian semigroups of operators in the space of Borel functions on a separable Hilbert space. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1320-1340. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a66/

[1] P. Acquistapace, F. Bucci, “Uniqueness for Riccati equations with application to the optimal boundary control of composite systems of evolutionary partial differential equations”, Ann. Mat. Pura Appl. (4), 202:4 (2023), 1611–1642 | DOI | MR | Zbl

[2] V.I. Averbukh, O.G. Smolyanov, S.V. Fomin, “Generalized functions and differential equations in linear spaces. I. Differentiable measures”, Tr. Mosk. Mat. Obs., 24, 1971, 133–174 | MR | Zbl

[3] A. Bensoussan, G. Da Prato, M.C. Delfour, S.K. Mitter, Representation and control of infinite dimensional systems, Birkhäuser, Boston, 2007 | DOI | MR | Zbl

[4] M.S. Birman, M.Z. Solomjak, Spectral theory of self-adjoint operators in Hilbert space, Kluwer, Dordrecht etc., 1987 | DOI | MR | Zbl

[5] V.I. Bogachev, M. Röckner, B. Schmuland, “Generalized Mehler semigroups and applications”, Probab. Theory Relat. Fields, 105:2 (1996), 193–225 | DOI | MR | Zbl

[6] V.I. Bogachev, Gaussian measures, American Mathematical Soc., Providence, 1998 | MR | Zbl

[7] V.I. Bogachev, Measure Theory, v. I, Springer-Verlag, Berlin, 2007 | MR | Zbl

[8] V.I. Bogachev, O.G. Smolyanov, Real and functional analysis, Springer, Cham, 2020 | DOI | MR | Zbl

[9] Yu.L. Dalecky, S.V. Fomin, Measures and differential equations in infinite-dimensional space, Kluwer, Dordrecht etc, 1991 | MR | Zbl

[10] J. Dixmier, Les algèbres d'opérateurs dans l'espace Hilbertien (algèbres de von Neumann), Gauthier-Villars, Paris, 1957 | MR | Zbl

[11] K.-J. Engel, R. Nagel, One-parameter semigroups for linear evolution equations, Springer, Berlin, 2000 | DOI | MR | Zbl

[12] O.E. Galkin, S.Yu. Galkina, “On the invertibility of solutions of first order linear homogeneous differential equations in Banach algebras”, Zhurnal SVMO, 21:4 (2019), 430–442 | DOI | MR

[13] G. Genovese, R. Lucà, N. Tzvetkov, “Quasi-invariance of Gaussian measures for the periodic Benjamin-Ono-BBM equation”, Stoch PDE: Anal. Comp., 11:2 (2023), 651–684 | DOI | MR | Zbl

[14] H.-H. Kuo, Gaussian measures in Banach spaces, Springer, Berlin etc, 1975 | MR | Zbl

[15] I.C. Gohberg, M.G. Krein, Introduction to the theory of linear nonselfadjoint operators, American Mathematical Society, Providence, 1969 | MR | Zbl

[16] R.E. Kalman, P.L. Falb, M.A. Arbib, Topics in mathematical system theory, McGraw-Hill Book Company, New York etc, 1969 | MR | Zbl

[17] S.G. Krein, Linear differential equations in Banach space, American Mathematical Society, Providence, 1972 | MR | Zbl

[18] J.D. Lawson, Y. Lim, “The symplectic semigroup and Riccati differential equations”, J. Dyn. Control Syst., 12:1 (2006), 49–77 | DOI | MR | Zbl

[19] V.B. Lidsky, “Nonselfadjoint operators with a trace”, Am. Math. Soc., Transl., II. Ser., 47 (1965), 43–46 | DOI | Zbl

[20] L.A. Lusternik, V.J. Sobolev, Elements of functional analysis, Constable and Co., London, 1961 | MR | Zbl

[21] J.L. Massera, J.J. Schäffer, Linear differential equations and function spaces, Academic Press, New York-London, 1966 | MR | Zbl

[22] I.G. Petrovsky, Lectures on partial differential equations, Dover Publications Inc., New York, 1991 | MR

[23] A.V. Skorohod, Integration in Hilbert space, Springer, Berlin-Heidelberg-New York, 1974 | MR | Zbl

[24] G. Xu, “Some problems of linear differential equations on abstract spaces and unbounded perturbations of linear operator semigroup”, Front. Math. China, 17:1 (2022), 47–77 | DOI | MR | Zbl