Gaussian semigroups of operators in the space of Borel functions on a separable Hilbert space
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1320-1340
Voir la notice de l'article provenant de la source Math-Net.Ru
The concept of a Gaussian family of Borel measures on a separable Hilbert space is introduced in the paper. Necessary and sufficient conditions are found under which a Gaussian family of measures generates a semigroup of operators on the space of complex bounded Borel functions. These conditions are expressed in the form of a system of functional equations and initial conditions for operator-valued functions on the real semi-axis. A system of differential equations is derived from the system of functional equations and it is proved that the Cauchy problem has a unique solution for it. Several examples of Gaussian semigroups of operators are given.
Keywords:
gaussian semigroup of operators, Gaussian family of Borel measures, operator Riccati differential equation, determinant of infinite order, system of functional equations.
@article{SEMR_2023_20_2_a66,
author = {O. E. Galkin and S. Yu. Galkina and I. Yu. Yastrebova},
title = {Gaussian semigroups of operators in the space of {Borel} functions on a separable {Hilbert} space},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1320--1340},
publisher = {mathdoc},
volume = {20},
number = {2},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a66/}
}
TY - JOUR AU - O. E. Galkin AU - S. Yu. Galkina AU - I. Yu. Yastrebova TI - Gaussian semigroups of operators in the space of Borel functions on a separable Hilbert space JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2023 SP - 1320 EP - 1340 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a66/ LA - ru ID - SEMR_2023_20_2_a66 ER -
%0 Journal Article %A O. E. Galkin %A S. Yu. Galkina %A I. Yu. Yastrebova %T Gaussian semigroups of operators in the space of Borel functions on a separable Hilbert space %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2023 %P 1320-1340 %V 20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a66/ %G ru %F SEMR_2023_20_2_a66
O. E. Galkin; S. Yu. Galkina; I. Yu. Yastrebova. Gaussian semigroups of operators in the space of Borel functions on a separable Hilbert space. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1320-1340. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a66/