Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2023_20_2_a65, author = {N. V. Abrosimov and V. V. Aseev}, title = {Multivalued quasim\"obius property and bounded turning}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1185--1199}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a65/} }
TY - JOUR AU - N. V. Abrosimov AU - V. V. Aseev TI - Multivalued quasim\"obius property and bounded turning JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2023 SP - 1185 EP - 1199 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a65/ LA - en ID - SEMR_2023_20_2_a65 ER -
N. V. Abrosimov; V. V. Aseev. Multivalued quasim\"obius property and bounded turning. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1185-1199. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a65/
[1] P. Tukia, J. Väisälä, “Quasisymmetric embeddings of metric spaces”, Ann. Acad. Sci. Fenn., Ser. A I Math., 5:1 (1980), 96–114 | MR | Zbl
[2] J.Väisälä, “Quasi-symmetric embeddings in Euclidean spaces”, Trans. Am. Math. Soc., 264:1 (1981), 191–204 | MR | Zbl
[3] J.Väisälä, “Quasimöbius maps”, J. Anal. Math., 44 (1985), 218–234 | DOI | Zbl
[4] V.V. Aseev, A.V. Sychev, A.V. Tetenov, “Möbius-invariant metrics and generalized angles in Ptolemaic spaces”, Sib. Math. J., 46:2 (2005), 189–204 | DOI | MR | Zbl
[5] V.V. Aseev, “Generalized angles in Ptolemaic Möbius structures. II”, Sib. Math. J., 59:5 (2018), 768–777 | DOI | MR | Zbl
[6] V.V. Aseev, “Generalized angles in Ptolemaic Möbius structures”, Sib. Math. J., 59:2 (2018), 189–201 | DOI | MR | Zbl
[7] V.V. Aseev, “Multivalued mappings with quasimöbius property”, Sib. Math. J., 60:5 (2019), 741–756 | DOI | MR | Zbl
[8] V.V. Aseev, “On coordinate vector-functions of quasiregular mappings”, Sib. Èlectron. Math. Izv., 15 (2018), 768–772 | DOI | MR | Zbl
[9] V.V. Aseev, “Multivalued quasimöbius mappings of circle to circle”, Sib. Math. J., 62:1 (2021), 14–22 | DOI | MR | Zbl
[10] P. Tukia, “Spaces and arcs of bounded turning”, Mich. Math. J., 43:3 (1996), 559–584 | DOI | MR | Zbl
[11] K. Kuratowski, Topology, Academic Press and Polish Scientific Publishers, New York–London–Warszawa, 1966 | Zbl
[12] L.M. Blumenthal, Theory and applications of distance geometry, Clarendon Press, Oxford, 1953 | MR | Zbl
[13] M.H.A. Newman, Elements of the topology of plane sets of points, Cambridge Univ. Press, Cambridge, 1939 | MR | Zbl