Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2023_20_2_a64, author = {A. I. Gudimenko}, title = {Inverse spectral problem for an antisymmetric tridiagonal matrix}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1026--1036}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a64/} }
TY - JOUR AU - A. I. Gudimenko TI - Inverse spectral problem for an antisymmetric tridiagonal matrix JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2023 SP - 1026 EP - 1036 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a64/ LA - ru ID - SEMR_2023_20_2_a64 ER -
A. I. Gudimenko. Inverse spectral problem for an antisymmetric tridiagonal matrix. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1026-1036. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a64/
[1] G.M.L. Gladwell, “Matrix inverse eigenvalue problems”, Dynamical inverse problems. Theory and application, CISM Courses and Lectures, 529, eds. Gladwell Graham M. L. et al., Springer, Wien, 2011 | MR | Zbl
[2] G.M.L. Gladwell, Inverse problems in vibration, Solid Mechanics and its Applications, 119, Kluwer Academic Publishers, Dordrecht, 2004 | MR | Zbl
[3] M.T. Chu, G.H. Golub, Inverse eigenvalue problems: theory, algorithms, and applications, Oxford University Press, Oxford, 2005 | MR | Zbl
[4] F.R. Gantmacher, M.G. Krein, Oscillation matrices and kernels and small vibrations of mechanical systems, AMS Chelsea Publishing, Providence, 2002 | MR | Zbl
[5] E. Schrödinger, “Zur Dynamik gekoppelter Punktsysteme”, Ann. d. Physik (4), 44 (1914), 916–934 | DOI | Zbl
[6] M. Möller, V. Pivovarchik, Direct and inverse finite-dimensional spectral problems on graphs, Operator Theory: Advances and Applications, 283, Birkhäuser, Cham, 2020 | DOI | MR | Zbl
[7] Z.-W. Sun, “Generalized inverse eigenvalue problems for augmented periodic Jacobi matrices”, Comput. Appl. Math., 38:3 (2019), 104 | DOI | MR | Zbl
[8] M. Heydari, S.A. Shahzadeh Fazeli, S.M. Karbassi, M.R. Hooshmandasl, “On the inverse eigenvalue problem for periodic Jacobi matrices”, Inverse Probl. Sci. Eng., 28:9 (2020), 1253–1264 | DOI | MR | Zbl
[9] A.C. Mikhaylov, V.C. Mikhaylov, “Inverse problem for dynamical system associated with Jacobi matrices and classical moment problems”, J. Math. Anal. Appl., 487:1 (2020), 123970 | DOI | MR | Zbl
[10] A.C. Mikhaylov, V.C. Mikhaylov, “Inverse problems for finite Jacobi matrices and Krein-Stieltjes strings”, J. Inverse Ill-Posed Probl., 29:4 (2021), 611–628 | DOI | MR | Zbl
[11] W.-R. Xu, N. Bebiano, G.-L. Chen, “An inverse eigenvalue problem for modified pseudo-Jacobi matrices”, J. Comput. Appl. Math., 389 (2021), 113361 | DOI | MR | Zbl
[12] F.V. Atkinson, Discrete and continuous boundary problems, Mathematics in Science and Engineering, 8, Academic Press, New York-London, 1964 | MR | Zbl
[13] G.Sh. Guseinov, “On an inverse problem for two spectra of finite Jacobi matrices”, Appl. Math. Comput., 218:14 (2012), 7573–7589 | MR | Zbl
[14] N.I. Akhiezer, The classical moment problem and some related questions in analysis, Oliver Boyd, Edinburgh-London, 1965 | MR | Zbl
[15] F.R. Gantmacher, The theory of matrices, v. 1, AMS Chelsea Publishing, Providence, 1998 | MR | Zbl