Inverse spectral problem for an antisymmetric tridiagonal matrix
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1026-1036
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of recovering an antisymmetric tridiagonal matrix from the eigenvalues of this matrix and the normalizing constants for its eigenvectors is solved. Matrices of this type arise in the theory of small oscillations of mechanical systems and are related to the matrices of the systems through the Schrödinger transformation. The problem is solved by the method of orthogonal polynomials.
Keywords:
inverse spectral problem, antisymmetric tridiagonal matrix, Schrödinger variables.
@article{SEMR_2023_20_2_a64,
author = {A. I. Gudimenko},
title = {Inverse spectral problem for an antisymmetric tridiagonal matrix},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1026--1036},
publisher = {mathdoc},
volume = {20},
number = {2},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a64/}
}
TY - JOUR AU - A. I. Gudimenko TI - Inverse spectral problem for an antisymmetric tridiagonal matrix JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2023 SP - 1026 EP - 1036 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a64/ LA - ru ID - SEMR_2023_20_2_a64 ER -
A. I. Gudimenko. Inverse spectral problem for an antisymmetric tridiagonal matrix. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1026-1036. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a64/