Phase control of the power of a floating wave power plant
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1626-1641.

Voir la notice de l'article provenant de la source Math-Net.Ru

A floating wave power plant receives the energy of a sea wave. Improving the efficiency of converting wave energy into a mechanical ability to control the flow of water through a hydro turbine. The article deals with the issues of checking the operation of units of a floating wave power plant with a regular wave process. A design of a wave receiver in the form of a spoiler trap with numerous chambers that scatter the reflected wave flux is proposed. The dependences for finding the total energy flow in the conduit of a screw hydroturbine are given. A method is proposed for determining the mass of water entering the spoiler trap. The need to ensure synchronization of the throughput capacity of the conduit with regular wave processes is shown. Synchronization methods are discussed, an actuator in the form of a controlled pneumatic actuator of a leaf damper at the conduit outlet is proposed. A relay algorithm for controlling the synchronization system is proposed, and the results of its simulation study are presented.
Keywords: energy resource of regular waves, hydro turbine power, phase synchronization.
@article{SEMR_2023_20_2_a61,
     author = {A. B. Darienkov and M. V. Zhelonkin and A. A. Kurkin and A. S. Plekhov},
     title = {Phase control of the power of a floating wave power plant},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1626--1641},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a61/}
}
TY  - JOUR
AU  - A. B. Darienkov
AU  - M. V. Zhelonkin
AU  - A. A. Kurkin
AU  - A. S. Plekhov
TI  - Phase control of the power of a floating wave power plant
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 1626
EP  - 1641
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a61/
LA  - ru
ID  - SEMR_2023_20_2_a61
ER  - 
%0 Journal Article
%A A. B. Darienkov
%A M. V. Zhelonkin
%A A. A. Kurkin
%A A. S. Plekhov
%T Phase control of the power of a floating wave power plant
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 1626-1641
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a61/
%G ru
%F SEMR_2023_20_2_a61
A. B. Darienkov; M. V. Zhelonkin; A. A. Kurkin; A. S. Plekhov. Phase control of the power of a floating wave power plant. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1626-1641. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a61/

[1] M.E. McCormick, Ocean Wave Energy Conversion, Dover Publications, 2007 | MR

[2] Ocean energy technology. Overview, Federal Energy Management Program, 2009

[3] J. Falnes, Ocean Waves and Oscillating Systems, Cambridge University Press, Cambridge, 2002

[4] H.Chr. Sorensen, S. Naef, Report on technical specification of reference technologies (wave and tidal power plant), New Energy Externalities Developments for Sustainability, Sixth Framework Programme, Project No502687, 2008

[5] M. Folley, T. Whittaker, M. Osterried, The oscillating wave surge converter, Paper No 2004-JSC-377, School of Civil Engineering, Queen's University Belfast, Belfast, 2004

[6] T. Heath, T.J.T. Whittaker, C.B. Boake, “The design, construction and operation of the LIMPET wave energy converter (Islay, Scotland)”, Proceedings of 4th European Wave Energy Conference, 2000, 49–55

[7] A.B. Tarasov, G.I. Topazh, “Obosnovaniye optimalnykh parametrov gidroagregatov malykh GES”, Gidrotekhnicheskoye stroitelstvo, 2010:1 (2010), 27–30

[8] P.P. Bezrukikh, Yu.D. Arbuzov, G.A. Borisov et al., Resursy i effektivnost' ispol'zovaniya vozobnovlyayemykh istochnikov energii v Rossii, Nauka, Saint Petersburg, 2002

[9] A.A. Kurkin, D.A. Malyarov, A.S. Plekhov, A.B. Darienkov, Floating wave power plant, Patent for invention RU 2703877 C2, 10/22/2019. Application No2017135564 dated 10/05/2017

[10] M.V. Zhelonkin, A.B. Loskutov, A.S. Plekhov, D.A. Malyarov, “Design analysis and modeling of a floating wave power plant in the coastal zone using computational fluid dynamics”, Bulletin of mechanical engineering, 2023:1 (2023), 11–26

[11] V.I. Sichkarev, A.S. Shpak, “Classification and analysis of technical methods of wave energy extraction”, The usage of tidal and wind waves in oceans, TOI DVNTS AN USSR, Vladivostok, 1984, 33–40

[12] Yu.S. Volkov, V.L. Miroshnichenko, “Constructing a mathematical model of a universal characteristic for a radial-axial hydroturbine”, Sib. Zh. Ind. Mat., 1:1 (1998), 77–88 | Zbl

[13] Konstantinov G.G., Mayorov G.S., “Development and research of an autonomous source of electricity based on a microhydroelectric power station and an asynchronous generator with capacitor excitation”, Bulletin of the Irkutsk State Technical University, 22:10 (2018), 92–116 | DOI

[14] A.A. Kurkin, O.E. Kurkina, A.A. Rodin, L.V. Talalushkina, E.A. Ruvinskaya, “First results of laboratory research of long-wave processes”, All-Russian scientific conference «Tsunami waves: modeling, monitoring, forecast» (May 17, Moscow, 2019)

[15] A.B. Darienkov, D.A. Malyarov, A.S. Plekhov, E.V. Kryukov, “Models of the electromechanical system of a floating wave power plant”, Bulletin of Mechanical Engineering, 102:4 (2023), 21–42 | MR