Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2023_20_2_a60, author = {M. A. Shishlenin and N. A. Savchenko and N. S. Novikov and D. V. Klyuchinskiy}, title = {On the reconstruction of the absorption coefficient for the {2D} acoustic system}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1474--1489}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a60/} }
TY - JOUR AU - M. A. Shishlenin AU - N. A. Savchenko AU - N. S. Novikov AU - D. V. Klyuchinskiy TI - On the reconstruction of the absorption coefficient for the 2D acoustic system JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2023 SP - 1474 EP - 1489 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a60/ LA - en ID - SEMR_2023_20_2_a60 ER -
%0 Journal Article %A M. A. Shishlenin %A N. A. Savchenko %A N. S. Novikov %A D. V. Klyuchinskiy %T On the reconstruction of the absorption coefficient for the 2D acoustic system %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2023 %P 1474-1489 %V 20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a60/ %G en %F SEMR_2023_20_2_a60
M. A. Shishlenin; N. A. Savchenko; N. S. Novikov; D. V. Klyuchinskiy. On the reconstruction of the absorption coefficient for the 2D acoustic system. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1474-1489. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a60/
[1] S.K. Godunov, A.V. Zabrodin, M.Y. Ivanov, A.N. Kraiko, G.P. Prokopov, Numerical solution of multidimensional problems of gas dynamics, Nauka, M., 1976 | MR
[2] B. van Leer, “On the relation between the upwind-differencing schemes of Godunov, Engquist-Osher and Roe”, SIAM J. Sci. Stat. Comput., 5 (1984), 1–20 | DOI | MR | Zbl
[3] V.G. Romanov, S.I. Kabanikhin, Inverse problems for Maxwell's equations, VSP, Utrecht, 1994 | MR | Zbl
[4] S. He, S.I. Kabanikhin, “An optimization approach to a three-dimensional acoustic inverse problem in the time domain”, J. Math. Phys., 36:8 (1995), 4028–4043 | DOI | MR | Zbl
[5] S.I. Kabanikhin, O. Scherzer, M.A. Shishlenin, “Iteration methods for solving a two dimensional inverse problem for a hyperbolic equation”, J. Inverse Ill-Posed Probl., 11:1 (2003), 87–109 | DOI | MR | Zbl
[6] O.Y. Imanuvilov, V. Isakov, M. Yamamoto, “An inverse problem for the dynamical Lamé system with two sets of boundary data”, Commun. Pure Appl. Math., 56:9 (2003), 1366–1382 | DOI | MR | Zbl
[7] V.G. Romanov, D.I. Glushkova, “The problem of determining two coefficients of a hyperbolic equation”, Dokl. Math., 67:3 (2003), 386–390 | MR | Zbl
[8] D.I. Glushkova, V.G. Romanov, “A stability estimate for a solution to the problem of determination of two coefficients of a hyperbolic equation”, Sib. Math. J., 44:2 (2003), 250–259 | DOI | MR | Zbl
[9] S. Li, “An inverse problem for Maxwell's equations in bi-isotropic media”, SIAM J. Math. Anal., 37:4 (2005), 1027–1043 | DOI | MR | Zbl
[10] S. Li, M. Yamamoto, “An inverse source problem for Maxwell's equations in anisotropic media”, Appl. Anal., 84:10 (2005), 1051–1067 | DOI | MR | Zbl
[11] A.M. Blokhin, Y.L. Trakhinin, Well-posedness of linear hyperbolic problems: theory and applications, Nova Science Publishers, New York, 2006 | MR | Zbl
[12] S. Li, M. Yamamoto, “An inverse problem for Maxwell's equations in anisotropic media”, Chin. Ann. Math., Ser B, 28:1 (2007), 35–54 | DOI | MR | Zbl
[13] M. Bellassoued, D. Jellali, M. Yamamoto, “Lipschitz stability in in an inverse problem for a hyperbolic equation with a finite set of boundary data”, Appl. Anal., 87:10-11 (2008), 1105–1119 | DOI | MR | Zbl
[14] S.I. Kabanikhin, M.A. Shishlenin, “Quasi-solution in inverse coefficient problems”, J. Inverse Ill-Posed Probl., 16:7 (2008), 705–713 | DOI | MR | Zbl
[15] L. Beilina, M.V. Klibanov, “Synthesis of global convergence and adaptivity for a hyperbolic coefficient inverse problem in 3D”, J. Inverse Ill-Posed Probl., 18:1 (2010), 85–132 | DOI | MR | Zbl
[16] J. Xin, L. Beilina, M. Klibanov, “Globally convergent numerical methods for some coefficient inverse problems”, Comput. Sci. Eng., 12:5 (2010), 64–77 | MR
[17] L. Beilina, “Adaptive finite element method for a coefficient inverse problem for Maxwell's system”, Appl. Anal., 90:9-10 (2011), 1461–1479 | DOI | MR | Zbl
[18] N. Duric, P. Littrup, C. Li, O. Roy, S. Schmidt, R. Janer, X. Cheng, J. Goll, O. Rama, L. Bey-Knight, W. Greenway, “Breast ultrasound tomography: Bridging the gap to clinical practice”, Proc. SPIE, 8320, 2012, 832000
[19] R. Jirík, I. Peterlik, N. Ruiter, J. Fousek, R. Dapp, M. Zapf, J. Jan, “Sound-speed image reconstruction in sparse-aperture 3D ultrasound transmission tomography”, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 59:2 (2012), 254–264 | DOI
[20] M.V. Klibanov, “Carleman estimates for global uniqueness, stability and numerical methods for coefficient inverse problems”, J. Inverse Ill-Posed Probl., 21:4 (2013), 477–560 | DOI | MR | Zbl
[21] S.I.Kabanikhin, D.B. Nurseitov, M.A. Shishlenin, B.B. Sholpanbaev, “Inverse problems for the ground penetrating radar”, J. Inverse Ill-Posed Probl., 21:6 (2013), 885–892 | DOI | MR | Zbl
[22] V.A. Burov, D.I. Zotov, O.D. Rumyantseva, “Reconstruction of the sound velocity and absorption spatial distributions in soft biological tissue phantoms from experimental ultrasound tomography data”, Acoust. Phys., 61:2 (2015), 231–248 | DOI | MR
[23] L. Beilina, M. Cristofol, K. Niinimäki, “Optimization approach for the simultaneous reconstruction of the dielectric permittivity and magnetic permeability functions from limited observations”, Inverse Probl. Imaging, 9:1 (2015), 1–25 | DOI | MR | Zbl
[24] L. Beilina, S. Hosseinzadegan, “An adaptive finite element method in reconstruction of coefficients in Maxwell's equations from limited observations”, Appl. Math., Praha, 51:3 (2016), 253–286 | DOI | MR | Zbl
[25] L. Beilina, M. Cristofol, S. Li, M. Yamamoto, “Lipschitz stability for an inverse hyperbolic problem of determining two coefficients by a finite number of observations”, Inverse Probl., 34:1 (2017), 015001 | DOI | MR | Zbl
[26] J. Seydel, Th. Schuster, “Identifying the stored energy of a hyperelastic structure by using an attenuated Landweber method”, Inverse Probl., 33:12 (2017), 124004 | DOI | MR | Zbl
[27] J. Wiskin, B. Malik, R. Natesan, M. Lenox, “Quantitative assessment of breast density using transmission ultrasound tomography”, Med. Phys., 46:6 (2019), 2610–2620 | DOI
[28] M.V. Klibanov, “Travel time tomography with formally determined incomplete data in 3D”, Inverse Probl. Imaging, 13:6 (2019), 1367–1393 | DOI | MR | Zbl
[29] M.V. Klibanov, “On the travel time tomography problem in 3D”, J. Inverse Ill-Posed Probl., 27:4 (2019), 591–607 | DOI | MR | Zbl
[30] S.I. Kabanikhin, D.V. Klyuchinskiy, N.S. Novikov, M.A. Shishlenin, “Numerics of acoustical 2D tomography based on the conservation laws”, J. Inverse Ill-Posed Probl., 28:2 (2020), 287–297 | DOI | MR | Zbl
[31] D. Klyuchinskiy, N. Novikov, M. Shishlenin, “A modification of gradient descent method for solving coefficient inverse problem for acoustics equations”, Computation, 8:3 (2020), 73 | DOI
[32] S.I. Kabanikhin, K.K. Sabelfeld, N.S. Novikov, M.A. Shishlenin, “Numerical solution of an inverse problem of coefficient recovering for a wave equation by a stochastic projection methods”, Monte Carlo Methods Appl., 21:3 (2015), 189–203 | DOI | MR | Zbl
[33] P. Stefanov, G. Uhlmann, A. Vasy, “Local recovery of the compressional and shear speeds from the hyperbolic DN map”, Inverse Probl., 34:1 (2018), 014003 | DOI | MR | Zbl
[34] V. Filatova, A. Danilin, V. Nosikova, L. Pestov, “Supercomputer Simulations of the Medical Ultrasound Tomography Problem”, Parallel Computational Technologies, PCT 2019, Commun. Comput. Inf. Sci., 1063, eds. Sokolinsky L., Zymbler M., Springer, Cham, 2019, 297–308
[35] V. Filatova, L. Pestov, A. Poddubskaya, “Detection of velocity and attenuation inclusions in the medical ultrasound tomography”, J. Inverse Ill-Posed Probl., 29:3 (2021), 459–466 | DOI | MR | Zbl
[36] I.M. Kulikov, N.S. Novikov, M.A. Shishlenin, “Mathematical modeling of ultrasonic wave propagation in a two-dimensional medium: direct and inverse problem”, Proceedings of Conferences, 12, Proceedings of the VI International scientific school-conference for young scientists «Theory and numerical methods for solving inverse and ill-posed problem», (2015), C219–C228 http://semr.math.nsc.ru/v12/c1-283.pdf | MR
[37] R. Klein, Th. Schuster, A. Wald, “Sequential subspace optimization for recovering stored energy functions in hyperelastic materials from time-dependent data”, Time-dependent problems in imaging and parameter identification, eds. Kaltenbacher Barbara et al., Springer, Cham, 2021, 165–190 | DOI | Zbl
[38] D.V. Klyuchinskiy, N.S. Novikov, M.A. Shishlenin, “CPU-time and RAM memory optimization for solving dynamic inverse problems using gradient-based approach”, J. Comput. Phys., 439 (2021), 110374 | DOI | MR | Zbl
[39] M. Shishlenin, N. Savchenko, N. Novikov, D. Klyuchinskiy, “Modeling of 2D acoustic radiation patterns as a control problem”, Mathematics, 10:7 (2022), 1116 | DOI
[40] D. Klyuchinskiy, N. Novikov, M. Shishlenin, “Recovering density and speed of Sound coefficients in the 2D hyperbolic system of acoustic equations of the first order by a finite number of observations”, Mathematics, 9:2 (2021), 199 | DOI
[41] Xinhua Guo, Yuanhuai Zhang, Jiabao An, Qing Zhang, Ranxu Wang, Xiantao Yu, “Experimental investigation on characteristics of graphene acoustic transducers driven by electrostatic and electromagnetic forces”, Ultrasonics, 127 (2023), 106857 | DOI
[42] F. Lucka, M. Pérez-Liva, B.E. Treeby, B.T. Cox, “High resolution 3D ultrasonic breast imaging by time-domain full waveform inversion”, Inverse Probl., 38:2 (2022), 025008 | DOI | MR | Zbl
[43] S. Bernard, V. Monteiller, D. Komatitsch, P. Lasaygues, “Ultrasonic computed tomography based on full-waveform inversion for bone quantitative imaging”, Phys. Med. Biol., 62:17 (2017), 7011–7035 | DOI
[44] S. Li, M. Yamamoto, “An inverse problem for Maxwell's equations in isotropic and non-stationary media”, Appl. Anal., 92:11 (2013), 2335–2356 | DOI | MR | Zbl
[45] M. Birk, R. Dapp, N.V. Ruiter, J. Becker, “GPU-based iterative transmission reconstruction in 3D ultrasound computer tomography”, J. Parallel Distrib. Comput., 74:1 (2014), 1730–1743 | DOI
[46] H. Gemmeke, T. Hopp, M. Zapf, C. Kaise, N.V. Ruiter, “3D ultrasound computer tomography: Hardware setup, reconstruction methods and first clinical results”, Nucl. Instrum. Methods Phys. Res. A, 873 (2017), 59–65 | DOI
[47] R. Guo, G. Lu, B. Qin, B. Fei, “Ultrasound imaging technologies for breast cancer detection and management: A review”, Ultrasound Med. Biol., 44:1 (2018), 37–70 | DOI
[48] P. Huthwaite, F. Simonetti, “High-resolution imaging without iteration: a fast and robust method for breast ultrasound tomography”, J. Acoust. Soc. Am., 130:3 (2011), 1721–1734 | DOI
[49] S. Li, M. Jackowski, D.P. Dione, T. Varslot, L.H. Staib, K. Mueller, “Refraction corrected transmission ultrasound computed tomography for application in breast imaging”, Med. Phys., 37:5 (2010), 2233–2246 | DOI
[50] B. Malik, R. Terry, J. Wiskin, M. Lenox, “Quantitative transmission ultrasound tomography: Imaging and performance characteristics”, Med. Phys., 45:7 (2018), 3063–3075 | DOI
[51] S. Manohar, M. Dantuma, “Current and future trends in photoacoustic breast imaging”, Photoacoustics, 16 (2019), 100134 | DOI
[52] M.G. Marmot, D.G. Altman, D.A. Cameron, J.A. Dewar, S.G. Thompson, M. Wilcox, “The benefits and harms of breast cancer screening: an independent review”, Br. J. Cancer, 108:11 (2013), 2205–2240 | DOI
[53] T.P. Matthews, K. Wang, C. Li, N. Duric, M.A. Anastasio, “Regularized dual averaging image reconstruction for full-wave ultrasound computed tomography”, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 64:5 (2017), 811–825 | DOI
[54] K.J. Opieliński, P. Pruchnicki, P. Szymanowski, W.K. Szepieniec, H. Szweda, E. Świś, M. Jóźwik, M. Tenderenda, M. Bułkowski, “Multimodal ultrasound computer-assisted tomography: An approach to the recognition of breast lesions”, Comput. Med. Imaging Graph., 65 (2018), 102–114 | DOI
[55] M. Pérez-Liva, J.L. Herraiz, J.M. Udias, E. Miller, B.T. Cox, B.E. Treeby, “Time domain reconstruction of sound speed and attenuation in ultrasound computed tomography using full wave inversion”, J. Acoust. Soc. Am., 141:3 (2017), 1595–1604 | DOI
[56] R. Sood, A.F. Rositch, D. Shakoor, E. Ambinder, K.-L-. Pool, E. Pollack, D.J. Mollura, L.A. Mullen, S.C. Harvey, “Ultrasound for breast cancer detection globally: A systematic review and meta-analysis”, J. Glob. Oncol., 5 (2019), 1–17 | DOI
[57] A. Vourtsis, “Three-dimensional automated breast ultrasound: Technical aspects and first results”, Diagn. Interv. Imaging, 100:10 (2019), 579–592 | DOI
[58] K. Wang, T. Matthews, F. Anis, C. Li, N. Duric, M. Anastasio, “Waveform inversion with source encoding for breast sound speed reconstruction in ultrasound computed tomography”, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 62:3 (2015), 475–493 | DOI
[59] Q. Zhu, S. Poplack, “A review of optical breast imaging: Multi-modality systems for breast cancer diagnosis”, Eur. J. Radiol., 129 (2020), 109067 | DOI
[60] Jiaze He, Jing Rao, Jacob D. Fleming, Hom Nath Gharti, Luan T. Nguyen, “Gaines Morrison, Numerical ultrasonic full waveform inversion (FWI) for complex structures in coupled 2D solid/fluid media”, Smart Materials and Structures, 30:8 (2021), 085044 | DOI
[61] A.S. Kozelkov, O.L. Krutyakova, V.V. Kurulin, D.Yu. Strelets, M.A. Shishlenin, “The accuracy of numerical simulation of the acoustic wave propagations in a liquid medium based on Navier-Stokes equations”, Sib. Élektron. Mat. Izv., 18:2 (2021), 1238–1250 | DOI | MR | Zbl
[62] A.S. Shurup, “Numerical comparison of iterative and functional-analytical algorithms for inverse acoustic scattering”, Eurasian J. Math. Computer Appl., 10:1 (2022), 79–99
[63] O.D. Rumyantseva, A.S. Shurup, D.I. Zotov, “Possibilities for separation of scalar and vector characteristics of acoustic scatterer in tomographic polychromatic regime”, J. Inverse Ill-Posed Probl., 29:3 (2021), 407–420 | DOI | MR | Zbl