On the reconstruction of the absorption coefficient for the 2D acoustic system
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1474-1489.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the coefficient inverse problem for the 2D system of acoustics. Our goal is to recover the coefficient of acoustic attenuation by using the additional information of the wave-field in the number of receivers. We obtain the gradient of the cost functional and implement the numerical algorithm for solving the inverse problem, based on a optimization approach. We provide the numerical results of recovering the absorption coefficient and study its influence on the efficiency of reconstructing other parameters of the system. By taking into account the absorption of the sounding wave we aim to bring the mathematical model closer to the applications, related to the ultrasound tomography of the human tissue.
Keywords: tomography, first-order hyperbolic system, inverse problem, acoustic attenuation.
Mots-clés : gradient descent method
@article{SEMR_2023_20_2_a60,
     author = {M. A. Shishlenin and N. A. Savchenko and N. S. Novikov and D. V. Klyuchinskiy},
     title = {On the reconstruction of the absorption coefficient for the {2D} acoustic system},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1474--1489},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a60/}
}
TY  - JOUR
AU  - M. A. Shishlenin
AU  - N. A. Savchenko
AU  - N. S. Novikov
AU  - D. V. Klyuchinskiy
TI  - On the reconstruction of the absorption coefficient for the 2D acoustic system
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 1474
EP  - 1489
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a60/
LA  - en
ID  - SEMR_2023_20_2_a60
ER  - 
%0 Journal Article
%A M. A. Shishlenin
%A N. A. Savchenko
%A N. S. Novikov
%A D. V. Klyuchinskiy
%T On the reconstruction of the absorption coefficient for the 2D acoustic system
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 1474-1489
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a60/
%G en
%F SEMR_2023_20_2_a60
M. A. Shishlenin; N. A. Savchenko; N. S. Novikov; D. V. Klyuchinskiy. On the reconstruction of the absorption coefficient for the 2D acoustic system. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1474-1489. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a60/

[1] S.K. Godunov, A.V. Zabrodin, M.Y. Ivanov, A.N. Kraiko, G.P. Prokopov, Numerical solution of multidimensional problems of gas dynamics, Nauka, M., 1976 | MR

[2] B. van Leer, “On the relation between the upwind-differencing schemes of Godunov, Engquist-Osher and Roe”, SIAM J. Sci. Stat. Comput., 5 (1984), 1–20 | DOI | MR | Zbl

[3] V.G. Romanov, S.I. Kabanikhin, Inverse problems for Maxwell's equations, VSP, Utrecht, 1994 | MR | Zbl

[4] S. He, S.I. Kabanikhin, “An optimization approach to a three-dimensional acoustic inverse problem in the time domain”, J. Math. Phys., 36:8 (1995), 4028–4043 | DOI | MR | Zbl

[5] S.I. Kabanikhin, O. Scherzer, M.A. Shishlenin, “Iteration methods for solving a two dimensional inverse problem for a hyperbolic equation”, J. Inverse Ill-Posed Probl., 11:1 (2003), 87–109 | DOI | MR | Zbl

[6] O.Y. Imanuvilov, V. Isakov, M. Yamamoto, “An inverse problem for the dynamical Lamé system with two sets of boundary data”, Commun. Pure Appl. Math., 56:9 (2003), 1366–1382 | DOI | MR | Zbl

[7] V.G. Romanov, D.I. Glushkova, “The problem of determining two coefficients of a hyperbolic equation”, Dokl. Math., 67:3 (2003), 386–390 | MR | Zbl

[8] D.I. Glushkova, V.G. Romanov, “A stability estimate for a solution to the problem of determination of two coefficients of a hyperbolic equation”, Sib. Math. J., 44:2 (2003), 250–259 | DOI | MR | Zbl

[9] S. Li, “An inverse problem for Maxwell's equations in bi-isotropic media”, SIAM J. Math. Anal., 37:4 (2005), 1027–1043 | DOI | MR | Zbl

[10] S. Li, M. Yamamoto, “An inverse source problem for Maxwell's equations in anisotropic media”, Appl. Anal., 84:10 (2005), 1051–1067 | DOI | MR | Zbl

[11] A.M. Blokhin, Y.L. Trakhinin, Well-posedness of linear hyperbolic problems: theory and applications, Nova Science Publishers, New York, 2006 | MR | Zbl

[12] S. Li, M. Yamamoto, “An inverse problem for Maxwell's equations in anisotropic media”, Chin. Ann. Math., Ser B, 28:1 (2007), 35–54 | DOI | MR | Zbl

[13] M. Bellassoued, D. Jellali, M. Yamamoto, “Lipschitz stability in in an inverse problem for a hyperbolic equation with a finite set of boundary data”, Appl. Anal., 87:10-11 (2008), 1105–1119 | DOI | MR | Zbl

[14] S.I. Kabanikhin, M.A. Shishlenin, “Quasi-solution in inverse coefficient problems”, J. Inverse Ill-Posed Probl., 16:7 (2008), 705–713 | DOI | MR | Zbl

[15] L. Beilina, M.V. Klibanov, “Synthesis of global convergence and adaptivity for a hyperbolic coefficient inverse problem in 3D”, J. Inverse Ill-Posed Probl., 18:1 (2010), 85–132 | DOI | MR | Zbl

[16] J. Xin, L. Beilina, M. Klibanov, “Globally convergent numerical methods for some coefficient inverse problems”, Comput. Sci. Eng., 12:5 (2010), 64–77 | MR

[17] L. Beilina, “Adaptive finite element method for a coefficient inverse problem for Maxwell's system”, Appl. Anal., 90:9-10 (2011), 1461–1479 | DOI | MR | Zbl

[18] N. Duric, P. Littrup, C. Li, O. Roy, S. Schmidt, R. Janer, X. Cheng, J. Goll, O. Rama, L. Bey-Knight, W. Greenway, “Breast ultrasound tomography: Bridging the gap to clinical practice”, Proc. SPIE, 8320, 2012, 832000

[19] R. Jirík, I. Peterlik, N. Ruiter, J. Fousek, R. Dapp, M. Zapf, J. Jan, “Sound-speed image reconstruction in sparse-aperture 3D ultrasound transmission tomography”, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 59:2 (2012), 254–264 | DOI

[20] M.V. Klibanov, “Carleman estimates for global uniqueness, stability and numerical methods for coefficient inverse problems”, J. Inverse Ill-Posed Probl., 21:4 (2013), 477–560 | DOI | MR | Zbl

[21] S.I.Kabanikhin, D.B. Nurseitov, M.A. Shishlenin, B.B. Sholpanbaev, “Inverse problems for the ground penetrating radar”, J. Inverse Ill-Posed Probl., 21:6 (2013), 885–892 | DOI | MR | Zbl

[22] V.A. Burov, D.I. Zotov, O.D. Rumyantseva, “Reconstruction of the sound velocity and absorption spatial distributions in soft biological tissue phantoms from experimental ultrasound tomography data”, Acoust. Phys., 61:2 (2015), 231–248 | DOI | MR

[23] L. Beilina, M. Cristofol, K. Niinimäki, “Optimization approach for the simultaneous reconstruction of the dielectric permittivity and magnetic permeability functions from limited observations”, Inverse Probl. Imaging, 9:1 (2015), 1–25 | DOI | MR | Zbl

[24] L. Beilina, S. Hosseinzadegan, “An adaptive finite element method in reconstruction of coefficients in Maxwell's equations from limited observations”, Appl. Math., Praha, 51:3 (2016), 253–286 | DOI | MR | Zbl

[25] L. Beilina, M. Cristofol, S. Li, M. Yamamoto, “Lipschitz stability for an inverse hyperbolic problem of determining two coefficients by a finite number of observations”, Inverse Probl., 34:1 (2017), 015001 | DOI | MR | Zbl

[26] J. Seydel, Th. Schuster, “Identifying the stored energy of a hyperelastic structure by using an attenuated Landweber method”, Inverse Probl., 33:12 (2017), 124004 | DOI | MR | Zbl

[27] J. Wiskin, B. Malik, R. Natesan, M. Lenox, “Quantitative assessment of breast density using transmission ultrasound tomography”, Med. Phys., 46:6 (2019), 2610–2620 | DOI

[28] M.V. Klibanov, “Travel time tomography with formally determined incomplete data in 3D”, Inverse Probl. Imaging, 13:6 (2019), 1367–1393 | DOI | MR | Zbl

[29] M.V. Klibanov, “On the travel time tomography problem in 3D”, J. Inverse Ill-Posed Probl., 27:4 (2019), 591–607 | DOI | MR | Zbl

[30] S.I. Kabanikhin, D.V. Klyuchinskiy, N.S. Novikov, M.A. Shishlenin, “Numerics of acoustical 2D tomography based on the conservation laws”, J. Inverse Ill-Posed Probl., 28:2 (2020), 287–297 | DOI | MR | Zbl

[31] D. Klyuchinskiy, N. Novikov, M. Shishlenin, “A modification of gradient descent method for solving coefficient inverse problem for acoustics equations”, Computation, 8:3 (2020), 73 | DOI

[32] S.I. Kabanikhin, K.K. Sabelfeld, N.S. Novikov, M.A. Shishlenin, “Numerical solution of an inverse problem of coefficient recovering for a wave equation by a stochastic projection methods”, Monte Carlo Methods Appl., 21:3 (2015), 189–203 | DOI | MR | Zbl

[33] P. Stefanov, G. Uhlmann, A. Vasy, “Local recovery of the compressional and shear speeds from the hyperbolic DN map”, Inverse Probl., 34:1 (2018), 014003 | DOI | MR | Zbl

[34] V. Filatova, A. Danilin, V. Nosikova, L. Pestov, “Supercomputer Simulations of the Medical Ultrasound Tomography Problem”, Parallel Computational Technologies, PCT 2019, Commun. Comput. Inf. Sci., 1063, eds. Sokolinsky L., Zymbler M., Springer, Cham, 2019, 297–308

[35] V. Filatova, L. Pestov, A. Poddubskaya, “Detection of velocity and attenuation inclusions in the medical ultrasound tomography”, J. Inverse Ill-Posed Probl., 29:3 (2021), 459–466 | DOI | MR | Zbl

[36] I.M. Kulikov, N.S. Novikov, M.A. Shishlenin, “Mathematical modeling of ultrasonic wave propagation in a two-dimensional medium: direct and inverse problem”, Proceedings of Conferences, 12, Proceedings of the VI International scientific school-conference for young scientists «Theory and numerical methods for solving inverse and ill-posed problem», (2015), C219–C228 http://semr.math.nsc.ru/v12/c1-283.pdf | MR

[37] R. Klein, Th. Schuster, A. Wald, “Sequential subspace optimization for recovering stored energy functions in hyperelastic materials from time-dependent data”, Time-dependent problems in imaging and parameter identification, eds. Kaltenbacher Barbara et al., Springer, Cham, 2021, 165–190 | DOI | Zbl

[38] D.V. Klyuchinskiy, N.S. Novikov, M.A. Shishlenin, “CPU-time and RAM memory optimization for solving dynamic inverse problems using gradient-based approach”, J. Comput. Phys., 439 (2021), 110374 | DOI | MR | Zbl

[39] M. Shishlenin, N. Savchenko, N. Novikov, D. Klyuchinskiy, “Modeling of 2D acoustic radiation patterns as a control problem”, Mathematics, 10:7 (2022), 1116 | DOI

[40] D. Klyuchinskiy, N. Novikov, M. Shishlenin, “Recovering density and speed of Sound coefficients in the 2D hyperbolic system of acoustic equations of the first order by a finite number of observations”, Mathematics, 9:2 (2021), 199 | DOI

[41] Xinhua Guo, Yuanhuai Zhang, Jiabao An, Qing Zhang, Ranxu Wang, Xiantao Yu, “Experimental investigation on characteristics of graphene acoustic transducers driven by electrostatic and electromagnetic forces”, Ultrasonics, 127 (2023), 106857 | DOI

[42] F. Lucka, M. Pérez-Liva, B.E. Treeby, B.T. Cox, “High resolution 3D ultrasonic breast imaging by time-domain full waveform inversion”, Inverse Probl., 38:2 (2022), 025008 | DOI | MR | Zbl

[43] S. Bernard, V. Monteiller, D. Komatitsch, P. Lasaygues, “Ultrasonic computed tomography based on full-waveform inversion for bone quantitative imaging”, Phys. Med. Biol., 62:17 (2017), 7011–7035 | DOI

[44] S. Li, M. Yamamoto, “An inverse problem for Maxwell's equations in isotropic and non-stationary media”, Appl. Anal., 92:11 (2013), 2335–2356 | DOI | MR | Zbl

[45] M. Birk, R. Dapp, N.V. Ruiter, J. Becker, “GPU-based iterative transmission reconstruction in 3D ultrasound computer tomography”, J. Parallel Distrib. Comput., 74:1 (2014), 1730–1743 | DOI

[46] H. Gemmeke, T. Hopp, M. Zapf, C. Kaise, N.V. Ruiter, “3D ultrasound computer tomography: Hardware setup, reconstruction methods and first clinical results”, Nucl. Instrum. Methods Phys. Res. A, 873 (2017), 59–65 | DOI

[47] R. Guo, G. Lu, B. Qin, B. Fei, “Ultrasound imaging technologies for breast cancer detection and management: A review”, Ultrasound Med. Biol., 44:1 (2018), 37–70 | DOI

[48] P. Huthwaite, F. Simonetti, “High-resolution imaging without iteration: a fast and robust method for breast ultrasound tomography”, J. Acoust. Soc. Am., 130:3 (2011), 1721–1734 | DOI

[49] S. Li, M. Jackowski, D.P. Dione, T. Varslot, L.H. Staib, K. Mueller, “Refraction corrected transmission ultrasound computed tomography for application in breast imaging”, Med. Phys., 37:5 (2010), 2233–2246 | DOI

[50] B. Malik, R. Terry, J. Wiskin, M. Lenox, “Quantitative transmission ultrasound tomography: Imaging and performance characteristics”, Med. Phys., 45:7 (2018), 3063–3075 | DOI

[51] S. Manohar, M. Dantuma, “Current and future trends in photoacoustic breast imaging”, Photoacoustics, 16 (2019), 100134 | DOI

[52] M.G. Marmot, D.G. Altman, D.A. Cameron, J.A. Dewar, S.G. Thompson, M. Wilcox, “The benefits and harms of breast cancer screening: an independent review”, Br. J. Cancer, 108:11 (2013), 2205–2240 | DOI

[53] T.P. Matthews, K. Wang, C. Li, N. Duric, M.A. Anastasio, “Regularized dual averaging image reconstruction for full-wave ultrasound computed tomography”, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 64:5 (2017), 811–825 | DOI

[54] K.J. Opieliński, P. Pruchnicki, P. Szymanowski, W.K. Szepieniec, H. Szweda, E. Świś, M. Jóźwik, M. Tenderenda, M. Bułkowski, “Multimodal ultrasound computer-assisted tomography: An approach to the recognition of breast lesions”, Comput. Med. Imaging Graph., 65 (2018), 102–114 | DOI

[55] M. Pérez-Liva, J.L. Herraiz, J.M. Udias, E. Miller, B.T. Cox, B.E. Treeby, “Time domain reconstruction of sound speed and attenuation in ultrasound computed tomography using full wave inversion”, J. Acoust. Soc. Am., 141:3 (2017), 1595–1604 | DOI

[56] R. Sood, A.F. Rositch, D. Shakoor, E. Ambinder, K.-L-. Pool, E. Pollack, D.J. Mollura, L.A. Mullen, S.C. Harvey, “Ultrasound for breast cancer detection globally: A systematic review and meta-analysis”, J. Glob. Oncol., 5 (2019), 1–17 | DOI

[57] A. Vourtsis, “Three-dimensional automated breast ultrasound: Technical aspects and first results”, Diagn. Interv. Imaging, 100:10 (2019), 579–592 | DOI

[58] K. Wang, T. Matthews, F. Anis, C. Li, N. Duric, M. Anastasio, “Waveform inversion with source encoding for breast sound speed reconstruction in ultrasound computed tomography”, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 62:3 (2015), 475–493 | DOI

[59] Q. Zhu, S. Poplack, “A review of optical breast imaging: Multi-modality systems for breast cancer diagnosis”, Eur. J. Radiol., 129 (2020), 109067 | DOI

[60] Jiaze He, Jing Rao, Jacob D. Fleming, Hom Nath Gharti, Luan T. Nguyen, “Gaines Morrison, Numerical ultrasonic full waveform inversion (FWI) for complex structures in coupled 2D solid/fluid media”, Smart Materials and Structures, 30:8 (2021), 085044 | DOI

[61] A.S. Kozelkov, O.L. Krutyakova, V.V. Kurulin, D.Yu. Strelets, M.A. Shishlenin, “The accuracy of numerical simulation of the acoustic wave propagations in a liquid medium based on Navier-Stokes equations”, Sib. Élektron. Mat. Izv., 18:2 (2021), 1238–1250 | DOI | MR | Zbl

[62] A.S. Shurup, “Numerical comparison of iterative and functional-analytical algorithms for inverse acoustic scattering”, Eurasian J. Math. Computer Appl., 10:1 (2022), 79–99

[63] O.D. Rumyantseva, A.S. Shurup, D.I. Zotov, “Possibilities for separation of scalar and vector characteristics of acoustic scatterer in tomographic polychromatic regime”, J. Inverse Ill-Posed Probl., 29:3 (2021), 407–420 | DOI | MR | Zbl