Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2023_20_2_a59, author = {A. I. Zadorin}, title = {Application of a {Taylor} series to approximate a function with large gradients}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1420--1429}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a59/} }
TY - JOUR AU - A. I. Zadorin TI - Application of a Taylor series to approximate a function with large gradients JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2023 SP - 1420 EP - 1429 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a59/ LA - en ID - SEMR_2023_20_2_a59 ER -
A. I. Zadorin. Application of a Taylor series to approximate a function with large gradients. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1420-1429. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a59/
[1] G.I. Shishkin, Grid approximations of singularly perturbed elliptic and parabolic equations, Ural Otd. Ross. Akad. Nauk, Yekaterinburg, 1992 | Zbl
[2] R.B. Kellogg, A. Tsan, “Analysis of some difference approximations for a singular perturbation problem without turning points”, Math. Comput., 32 (1978), 1025–1039 | DOI | MR | Zbl
[3] H.-G. Roos, M. Stynes, L. Tobiska, Robust numerical methods for singularly perturbed differential equations. Convection-diffusion-reaction and flow problems, Springer, Berlin, 2008 | MR | Zbl
[4] V.P. Il'in, “Adaptive formulas of numerical differentiation of functions with large gradients”, Phys.: Conf. Ser., 2019, 042003 | DOI
[5] A.M. Il'in, “Differencing scheme for a differential equation with a small parameter affecting the highest derivative”, Math. Notes, 6:2 (1970), 596–602 | DOI | Zbl
[6] A.I. Zadorin, “Non-polynomial interpolation of functions with large gradients and its application”, Comput. Math. Math. Phys., 61:2 (2021), 167–176 | DOI | MR | Zbl
[7] M.K. Kadalbajoo, D. Kumar, “Fitted mesh B-spline collocation method for singularly perturbed differential-equations with small delay”, Appl. Math. Comput., 204:1 (2008), 90–98 | DOI | MR | Zbl
[8] R. Ranjan, H.S. Prasad, “A novel approach for the numerical approximation to the solution of singularly perturbed differential-difference equations with small shifts”, J. Appl. Math. Comput., 65:1-2 (2021), 403–427 | DOI | MR | Zbl
[9] N.S. Bakhvalov, “The optimization of methods of solving boundary value problems with a boundary layer”, USSR Comput. Math. Math. Phys., 9:4 (1969), 139–166 | DOI | MR | Zbl
[10] J.J.H. Miller, E. O'Riordan, G.I. Shishkin, Fitted numerical methods for singular perturbation problems. Error estimates in the maximum norm for linear problems in one and two dimensions, World Scientific, Singapore, 1996 | DOI | MR | Zbl
[11] E.P. Doolan, J.J.H. Miller, W.H.A. Schilders, Uniform numerical methods for problems with initial and boundary layers, Boole Press, Dublin, 1980 | DOI | MR | Zbl