On mathematical models of COVID-19 pandemic
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1211-1268
Voir la notice de l'article provenant de la source Math-Net.Ru
The mathematical models for analysis and forecasting of COVID-19 pandemic based on time-series models, differential equations (SIR models based on odinary, partial and stochastic differential equations), agent-based models, mean field games and its combinations are considered. Inverse problems for mathematical models in epidemiology of COVID-19 are formulated in the variational form. The numerical results of modeling and scenarios of COVID-19 propagation in Novosibirsk region are demonstrated and discussed. The epidemiology parameters of COVID-19 propagation in Novosibirsk region (contagiosity, hospitalization and mortality rates, asymptomatic cases) are identified. The combination of differential and agent-based models increases the quality of forecast scenarios.
Keywords:
epidemiology, COVID-19, time-series models, agent-based models, mean field games, inverse problems, forecasting.
Mots-clés : SIR
Mots-clés : SIR
@article{SEMR_2023_20_2_a58,
author = {O. I. Krivorotko and S. I. Kabanikhin},
title = {On mathematical models of {COVID-19} pandemic},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1211--1268},
publisher = {mathdoc},
volume = {20},
number = {2},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a58/}
}
TY - JOUR AU - O. I. Krivorotko AU - S. I. Kabanikhin TI - On mathematical models of COVID-19 pandemic JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2023 SP - 1211 EP - 1268 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a58/ LA - ru ID - SEMR_2023_20_2_a58 ER -
O. I. Krivorotko; S. I. Kabanikhin. On mathematical models of COVID-19 pandemic. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1211-1268. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a58/