Localization of discontinuity surfaces of the scattering coefficient according to the time-angular distribution of the radiation flux density
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1079-1092.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper the inverse problem for the nonstationary radiative transfer equation is formulated and investigated. It consists in determining the discontinuity surfaces of the scattering coefficient by the time-angular distribution of the radiation flux density at a given point in space. A numerical method for localizing the lines of discontinuity of the required coefficient in any plane is proposed. On a number of numerical experiments applied to high-frequency acoustic sounding of an inhomogeneous fluctuating ocean, the operability of the algorithm is demonstrated and its shortcomings due to the measurement data error are indicated.
Keywords: radiative transfer equation, inverse problem, scattering coefficient, function discontinuity surfaces.
@article{SEMR_2023_20_2_a57,
     author = {P. A. Vornovskikh and I. V. Prokhorov},
     title = {Localization of discontinuity surfaces of the scattering coefficient according to the time-angular distribution of the radiation flux density},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1079--1092},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a57/}
}
TY  - JOUR
AU  - P. A. Vornovskikh
AU  - I. V. Prokhorov
TI  - Localization of discontinuity surfaces of the scattering coefficient according to the time-angular distribution of the radiation flux density
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 1079
EP  - 1092
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a57/
LA  - ru
ID  - SEMR_2023_20_2_a57
ER  - 
%0 Journal Article
%A P. A. Vornovskikh
%A I. V. Prokhorov
%T Localization of discontinuity surfaces of the scattering coefficient according to the time-angular distribution of the radiation flux density
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 1079-1092
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a57/
%G ru
%F SEMR_2023_20_2_a57
P. A. Vornovskikh; I. V. Prokhorov. Localization of discontinuity surfaces of the scattering coefficient according to the time-angular distribution of the radiation flux density. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1079-1092. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a57/

[1] P.A. Vornovskikh, A. Kim, I.V. Prokhorov, “The applicability of the approximation of single scattering in pulsed sensing of an inhomogeneous medium”, Computer Research and Modeling, 12:5 (2020), 1063–1079 | DOI

[2] P.A. Vornovskikh, I.V. Prokhorov, “Comparative analysis of the error of the single scattering approximation when solving one inverse problem in two-dimensional and three-dimensional cases”, Dal'nevost. Mat. Zh., 21:2 (2021), 151–165 | DOI | MR | Zbl

[3] A. Ishimaru, Wave propagation and scattering in random media, Academic Press, New York, 1978 | MR | Zbl

[4] V.I. Mendus, G.A. Postnov, “On angular intensity distribution of high-frequency ambient dynamic noise of the ocean”, Akust. Zh., 39:6 (1993), 1107–1116

[5] I.B. Andreeva, A.V. Belousov, “Applicability of the single-scattering approximation to problems of acoustic scattering from clusters of sea creatures”, Acoustical Physics, 42:4 (1996), 495–496

[6] G. Bal, “Kinetics of scalar wave fields in random media”, Wave Motion, 43:2 (2005), 132–157 | DOI | MR | Zbl

[7] G. Bal, “Inverse transport theory and applications”, Inverse Probl., 25:5 (2009), 053001 | DOI | MR | Zbl

[8] I.V. Prokhorov, V.V. Zolotarev, I.B. Agafonov, “The problem of acoustic sounding within fluctuation ocean”, Dal'nevost. Mat. Zh., 11:1 (2011), 76–87 | MR | Zbl

[9] I.V. Prokhorov, A.A. Sushchenko, “Studying the problem of acoustic sounding of the seabed using methods of radiative transfer theory”, Acoustical Physics, 61:3 (2015), 368–375 | DOI

[10] D.S. Anikonov, A.E. Kovtanyuk, I.V. Prokhorov, Transport equation and tomography, Inverse and Ill-Posed Problems Series, 30, VSP, Utrecht, 2002 | MR | Zbl

[11] A.I. Prilepko, A.L. Ivankov, “Inverse problems for determining the coefficient, the scattering indicatrix and the right-hand side of a time-dependent multiple-speed transport equation.”, Diff. Uravn., 21:5 (1985), 870–885 | MR | Zbl

[12] V.G. Romanov, “A stability estimate in the problem of determining the dispersion index and relaxation for the transport equation”, Sib. Math. J., 37:2 (1996), 308–324 | DOI | MR | Zbl

[13] S. Acosta, “Time reversal for radiative transport with applications to inverse and control problems”, Inverse Probl., 29:8 (2013), 085014 | DOI | MR | Zbl

[14] C. Wang, T. Zhou, “A hybrid reconstruction approach for absorption coefficient by fluorescence photoacoustic tomography”, Inverse Probl., 35:2 (2019), 025005 | DOI | MR | Zbl

[15] M. Bellassoued, Y. Boughanja, “An inverse problem for the linear Boltzmann equation with a time-dependent coefficient”, Inverse Probl., 35:8 (2019), 085003 | DOI | MR | Zbl

[16] W. Dahmen, F. Gruber, O. Mula, “An adaptive nested source term iteration for radiative transfer equations”, Math. Comput., 89:324 (2020), 1605–1646 | DOI | MR | Zbl

[17] Q. Li, W. Sun, “Applications of kinetic tools to inverse transport problems”, Inverse Probl., 36:3 (2020), 035011 | DOI | MR | Zbl

[18] A. Faridani, E.L. Ritman, K.T. Smith, “Local tomography”, SIAM J. Appl. Math., 52:2 (1992), 459–484 | DOI | MR | Zbl

[19] A. Faridani, D.V. Finch, E.L. Ritman, K.T. Smith, “Local tomography. II”, SIAM J. Appl. Math., 57:4 (1997), 1095–1127 | DOI | MR | Zbl

[20] E.T. Quinto, “Singularities of the X-ray transform and limited data tomography in $R^2$ and $R^3$”, SIAM J. Math. Anal., 24:5 (1993), 1215–1225 | DOI | MR | Zbl

[21] A.G. Ramm, A.I. Katsevich, The Radon transform and local tomography, CRC Press, Boca Raton, 1996 | DOI | MR | Zbl

[22] D.S. Anikonov, V.G. Nazarov, I.V. Prokhorov, “Algorithm of finding a body projection within an absorbing and scattering medium”, J. Inverse Ill-Posed Probl., 18:8 (2010), 885–893 | DOI | MR | Zbl

[23] D.S. Anikonov, V.G. Nazarov, I.V. Prokhorov, “An integrodifferential indicator for the problem of single beam tomography”, J. Appl. Ind. Math., 8:3 (2014), 301–306 | DOI | MR | Zbl

[24] V.G. Romanov, “Recovering jumps in X-ray tomography”, J. Appl. Ind. Math., 8:4 (2014), 582–593 | DOI | MR | Zbl

[25] E.Yu. Derevtsov, S.V. Mal'tseva, I.E. Svetov, “Determination of discontinuities of a function in a domain with refraction from its attenuated ray transform”, J. Appl. Ind. Math., 12:4 (2018), 619–641 | DOI | MR | Zbl

[26] S.V. Mal'tseva, I.E. Svetov, A.P. Polyakova, “Reconstruction of a function and its singular support in a cylinder by tomographic data”, Euras. J. Math. Computer Appl., 8:2 (2020), 86–97 | DOI

[27] G.I. Marchuk, G.A. Mikhailov, M.A. Nazaraliev, The Monte Carlo methods in atmospheric optics, Springer-Verlag, Berlin, 1980 | MR

[28] G.A. Mikhailov, I.N. Medvedev, Optimization of Weighted algorithms of statistical solution, Omega Print, 2011 (in Russian)