On the convergence of locally one-dimensional schemes for the differential equation in partial derivatives of fractional orders in a multidimensional domain
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1064-1078
Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2023_20_2_a56,
author = {A. K. Bazzaev},
title = {On the convergence of locally one-dimensional schemes for the differential equation in partial derivatives of fractional orders in a multidimensional domain},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1064--1078},
publisher = {mathdoc},
volume = {20},
number = {2},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a56/}
}
TY - JOUR AU - A. K. Bazzaev TI - On the convergence of locally one-dimensional schemes for the differential equation in partial derivatives of fractional orders in a multidimensional domain JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2023 SP - 1064 EP - 1078 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a56/ LA - ru ID - SEMR_2023_20_2_a56 ER -
%0 Journal Article %A A. K. Bazzaev %T On the convergence of locally one-dimensional schemes for the differential equation in partial derivatives of fractional orders in a multidimensional domain %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2023 %P 1064-1078 %V 20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a56/ %G ru %F SEMR_2023_20_2_a56
A. K. Bazzaev. On the convergence of locally one-dimensional schemes for the differential equation in partial derivatives of fractional orders in a multidimensional domain. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1064-1078. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a56/